
How Elastic are Real Applications?
Rolf Neugebauer

Department of Computing Science, University of Glasgow, Scotland, U.K.
neugebar@dcs.gla.ac.uk

Abstract— Programs are typically developed with little or no consider-
ation of their performance under different system loads or the effect they
may have on other processes competing for the same resources. To an ex-
tent, this stems from the “virtual machine” approach promoted by most
mainstream operating systems. With operating systems which offer mech-
anisms for fine-grained control of resource allocations it becomes apparent
that a central policy for allocating potentially scarce resources is not suf-
ficient. We are currently developing a toolkit which allows programmers
to systematically examine and assess the performance behaviour of a wide
range of applications under different resource allocations by determining
the applications’ utility curves. We argue that such a toolkit is useful for
the development of adaptive applications as well as for the implementation
of global resource management policies. In particular, we argue that this
is necessary for the application of economic models to the area of resource
management, as proposed by some researchers.

I. M OTIVATION

Resource management is a fundamental task performed by
operating systems. Most current mainstream operating systems
implement resource management policies which are oriented to-
wards overall system throughput and fairness. They perform
reasonably well for a mix of interactive, batch processing, or
server applications. Real-time operating systems are designed
to give hard guarantees on resource allocations to allow appli-
cations to perform time-critical tasks. This is achieved by al-
locating fixed shares of resources to processes for their entire
lifetime, or at least for a relatively long duration. Multimedia
operating systems (e.g., [14], [13], [6], [9], [5]) give soft real-
time guarantees for resource allocations to processes which may
be renegotiated dynamically at runtime, encouraging applica-
tions to adapt to the changing overall system load. This is usu-
ally achieved through explicit resource allocation and revoca-
tion. This process is commonly referred to asQoS-Management.

QoS-Management in operating systems has to deal with a va-
riety of applications demanding different combinations of re-
sources. In some systems (e.g., [6], [15]) a central resource
manager is deployed to perform both system wide and applica-
tion specific optimisations of resource allocations. Recently, al-
ternative approaches have been proposed that deploy economic
mechanisms for more decentralised resource management. This
has been proposed for the general area of resource management
in operating and distributed systems (e.g., [20], [4], [19], [8],
[11]) and for multimedia operating systems in particular [18].

The general idea of these proposals is that applications are
charged for resource allocations and/or usage. Prices for re-
sources are established dynamically at runtime. It is generally
assumed that prices reflect the current demand for a resource and
indicate the level of congestion. Most existing work suggests
the use of a bidding process to establish prices for resources

Rolf Neugebauer is funded by a Marie Curie Fellowship from the European
Union, Contract-No.: ERBFMBICT972363. This work is also supported by the
Pegasus II project (ESPRIT LTR 21917).

U

R

U

R

Fig. 1. Sample Utility Curves

(e.g., [3], [11]). Recent work in the area of pricing for com-
munication networks suggests that prices should also reflect the
marginal costs a particular resource allocation for one consumer
of a resource imposes on other consumers of the same resource,
e.g., [10], [7]; prices with this property are known asshadow
prices.

In such an architecture, applications or groups of applications,
are thought of as acting independently of each other and nego-
tiate a resource allocation with entities managing individual re-
sources attempting to maximise theirutility.1 Applications may
use the feedback provided by dynamic (shadow) prices to adapt
to different levels of resource congestion. Applications can fa-
cilitate this task by implicitly or explicitly modelling autility
function, defining the dependency of their utility on different
resource allocations. These are particularly useful to applica-
tion developers implementing application specific optimisation
strategies.

Consider the two idealised utility curves shown in Figure 1.2

The utility is plotted on the Y-axis while the quantity of a re-
source is plotted on the X-axis. The application shown on the
left provides maximum utility if it receives a certain quantity of
the resource and no utility at all if not. Applications with this
sharp loss of utility are usually calledreal-timeapplications –
they do not provide any scope for adaptation. The application
on the right offers a different level of utility depending on the
resources allocated to it. Above a certain level, the marginal
utility of additional resources is slight. The same applies to very
low resource allocations. In between the marginal utility of ad-
ditional resources is very high. Such applications are more tol-
erant to the resources they are allocated, and can adapt within a
range of resource allocations without incurring a disproportion-
ately high penalty on their utility. Such applications are often
calledelastic.

Whilst resource allocators should not have explicit knowledge
about applications’ utility functions, it is useful, if not necessary,
to make some assumptions about their generalshapewhen de-

1In economics, utility is a measure of the usefulness of a particular quantity
of a resource or a bundle of resources to individual consumers.
2Taken from [17].



signing a pricing mechanism for resources. Like applications,
resource allocators seek to optimise the global resource alloca-
tion either to maximise their “profit” or to achieve a “social opti-
mum”. Knowledge about the general shape of applications’ util-
ity functions allows system designers to reflect on the success of
these aims. To establish shadow prices, assumptions about the
shape of the utility functions are necessary, since shadow prices,
to an extent, reflect the marginal costs other applications have
to pay for the increase of a resource allocation for one applica-
tion. Note that the majority of proposals to use shadow prices
for resource management assume elastic applications.

The importance of the shape of utility functions both for the
applications and the overall resource allocation mechanism have
led us to conduct a series of experiments to investigate this mat-
ter systematically. For this purpose, we are developing a toolkit
which allows us to examine the effect of different resource allo-
cations on the performance of a wide range of applications. The
toolkit can also be used by application developers to study the
effectiveness of different application specific optimisations and
adaption techniques.

The primary aim of this research is to study theshapesof
utility curves and their dependencies on different resources for
a variety of real applications in order to develop a general pric-
ing scheme for resources in operating systems. In particular, we
are interested in finding out how elastic real applications are and
what makes applications elastic. We are not interested in the
measurement of absolute performance or quantitative compar-
isons of different applications since these are both implementa-
tion and operating system dependent.

In the next section we describe the architecture of our toolkit
and report on a sample implementation. We give an example
use of the toolkit in section III and in section IV we present our
conclusions.

II. A RCHITECTUREOVERVIEW

The main feature of the architecture is that an external con-
trol process systematically alters the resources allocated to a test
application. This allows systematic rather than empiric experi-
ments and requires little or no alteration of the test applications.
The control process monitors the utility of the test application
either by communicating with the test application or by measur-
ing its performance externally.

Measuring the performance externally is limited to record-
ing completion times for particular tasks or response time to re-
quests. This is useful for measuring the performance of batch
processing and server applications but is restrictive in that it is
difficult to measure some application domain specific quantities,
e.g., the frame rate or jitter of a video application. When such
measures are important, we require test applications to provide
a minimal control interface to the control process. This interface
permits both synchronous and asynchronous communication.

In the synchronous case, the control process sets the resource
allocation for the test application and then sends it astartmes-
sage. After a period of time, the control application sends a
stop message to the test application which responds with its
utility. When asynchronous control is used, the control applica-
tion sends astart message to the test application and awaits a
finishedmessage (including the utility) on a callback. By sys-

tematically altering the resource allocations and repeating the
start/stop or start/finished sequences, the necessary in-
formation to generate utility curves is collected by the control
process.

This raises two questions: what is the utility, and how can ap-
plications measure it? Unfortunately, the answer is simple but
unsatisfactory: “It depends.” The performance of applications
can be measured based on some form of QoS metric, e.g., the
ones presented in [16], [13]. For multimedia applications this
is usually the number of deadlines met; batch processing appli-
cations are usually evaluated in terms of completion time or the
number of requests processed and the performance of interactive
applications can be measured in terms of their response time.
However, utility ultimately denotesusefulnessto the user and
can be interpreted as the users’ willingness to pay for a specific
quantity of a resource. Consider, for example, a video display
application. Whilst occasional losses of frames or jitter might be
acceptable for a surveillance monitor application, it is certainly
unacceptable for a high quality movie playback. Similarly, for
batch processing applications, a result might not be of any use
to the user if a particular deadline is missed.

We argue that thesesubjectiveuser utility measures are de-
pendent onobjectiveutility measures as provided by a system-
atic performance analysis. If an application exhibits real-time
characteristics (as the one depicted in figure 1) then it is un-
realistic for the user to have a utility curve corresponding to a
non-real-time application. If an application has an elastic or lin-
ear utility curve then different user specific utility curves can be
mapped onto them by the application. The toolkit presented in
this paper is only concerned with providing objective applica-
tion utility curves based on measurable quantities. We envis-
age, however, that applications receive feedback from the user
at runtime, e.g., through a credits mechanism [18] or by allow-
ing the user to communicate his or her utility function to the
application [12], which allows applications to map subjective
utility curves to application utility curves at run-time attempting
to maximise the user’s utility.

A. Implementation

The above architecture has some requirements on the resource
management as implemented by the operating system. The op-
erating system has to offer fine grain control over resource al-
locations, manageable by the controlling applications. Further-
more, resource consumption must be accountable to individual
processes, i.e., if servers perform tasks on behalf of a test ap-
plication, then the resources consumed by the server should be
accounted to the test application.

The toolkit is currently implemented on Nemesis [9] which
fulfils these requirements with respect to all resources managed
by an operating system. The communication between the con-
trol process and test applications is implemented using Neme-
sis’ Inter Domain Communication (IDC) mechanism. The con-
trol application currently only alters the CPU resource alloca-
tions but we are planning to extend this to control other tem-
poral resources such as access to the disk and the network in-
terface. In Nemesis, both offer a similar abstraction to their
internal scheduling as the CPU scheduler [1], [2], so this ex-
tension should be relatively straightforward. We also have plans



0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45

%
 F

ra
m

es
 o

n 
tim

e

% CPU

ST Blit
MT Blit

MT Colour
MT Decode

MT Adapt
MT Adapt-2

MT Decode Adapt

Fig. 2. JPEG Decoder Utility Curves

to extend our architecture to incorporate support for spatial re-
sources; in particular we are interested in the performance be-
haviour of applications depending on the physical main memory
available to them.

We are currently investigating the possibility of applying our
architecture to a mainstream operating system. In particular, we
are planning to perform some initial experiments using KURT3,
a real-time extension to Linux, which appears to offer a suitable
infrastructure to allow fine grain control over CPU resource al-
locations.

III. E XAMPLE

We are currently deploying the toolkit to study the utility
curves of a number of applications. In this section we present
our results for a particular application, a Motion JPEG video
application.4 This application reads a series of JPEG encoded
frames from disk, decodes them, and displays them on the
screen. The application can be configured to adapt to different
resource allocations in different ways to maximise its perfor-
mance (see below). It was relatively easy to fit this application
into the architecture described in the last section. In the existing
source code only 15 lines in one file needed to be changed. The
utility measurement code can be conditionally enabled at com-
pile time. The communication via the control interface was im-
plemented in a separate file. The application uses asynchronous
communication – after being started it attempts to display a con-
figurable number of frames (500 for all experiments described
here) before reporting back its utility to the control application.

As our measure of utility we define the number of frames
which are displayed on time. For the purpose of this experi-
ment “on time” means that frames have to be displayed in fixed
intervals, corresponding to the video stream’s frame rate. We al-
low for a variation of the display time for each frame of half of
the interframe rate in each direction from the ideal display time,
thus limiting jitter. The results are shown in figure 2.

The right most graph, labelledST Blit, forms the base case
in which no adaptation is performed. A single thread is reading

3http://hegel.ittc.ukans.edu/projects/kurt/
4Originally written by Neil Stratford at the Computer Laboratory, University

of Cambridge, U.K.

data from the disk and decodes each frame. A decoded frame
is then only copied to the frame buffer if it is on time. This
configuration essentially forms a real-time application. For the
second graph, labelledMT Blit, the same configuration is used,
but decoding and displaying are decoupled and executed in sep-
arate threads. For the third graph the final step of the decoding
process (colour conversion from YUV to RGB colour space) is
moved into the display thread and dropped if a frame is not on
time. For the remaining graphs this is the default mode of op-
eration. For the fourth graph,MT Decode, the decoder does
not decode a frame whenever the previous frame could not be
displayed on time. The marginal increase in utility in the range
from 10% to 30% of the CPU for this configuration is almost lin-
ear. For the next two graphs, we reduced the quality5 of the de-
coding step, resulting in a less detailed image, rather than drop-
ping frames before the decoding process. For the graph labelled
MT Adaptthe quality level is decremented by a fixed amount
for every frame not displayed on time and incremented by the
same amount for every frame on time. For the second graph,
MT Adapt-2, the quality is decreased in larger decrements on
every frame not on time, then it is increased for each frame on
time. For the final graph, the adaptation strategies for the graphs
labelledMT Adapt-2andMT Decodewere combined – for ev-
ery missed deadline the quality of the decoding was reducedand
the next frame was not decoded. The resulting utility curve in-
dicates that the video application in this configuration is fairly
adaptive and can be termed elastic.

This example demonstrates how the toolkit can assist appli-
cation developers to evaluate different adaption techniques for
applications in order to make them elastic to different resource
allocations. The information obtained from these experiments
can be used to implement different strategies to react to both
different users preferences and varying resource availability.

IV. CONCLUSION

We presented a toolkit which allows the systematic study of
applications’ utility functions. We argued that such a toolkit is
useful to programmers developing adaptive applications allow-
ing them to evaluate the applications’ performance under differ-
ent system loads. We demonstrated with a sample application
that our toolkit can assist application developers to make appli-
cations elastic – a desirable property for adaptive applications.

We argued that the shape of applications’ utility functions
plays an important role in the design of resource pricing schemes
especially if shadow prices are used. We are currently conduct-
ing a series of experiments including multimedia and batch pro-
cessing applications to provide a systematic study of applica-
tions’ utility functions.

Currently, the toolkit only provides support for studying the
effect of CPU resource allocation on applications’ utility. We
are planning to extend the toolkit to include support for other
temporal resources and spatial resources.

ACKNOWLEDGEMENT

The author wishes to thank Derek McAuley, Richard Black,
and Huw Evans for their fruitful discussions and constructive
5By setting coefficients passed into the de-quantiser below a varying threshold

to zero.



feedback on earlier versions of this paper. I would also like to
thank the anonymous reviewers for their comments.

REFERENCES

[1] P. R. Barham. A fresh approach to File System Quality of Service. In
Proceedings of the 7th International Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV), St. Louis, USA,
May 1997.

[2] R. Black, P. Barham, A. Donnelly, and N. Stratford. Protocol Implemen-
tation in a Vertically Structured Operating System. InProceedings of the
22nd Annual Conference on Local Computer Networks (LCN’97), pages
179–188, Nov. 1997.

[3] N. R. Bogan. Economic Allocation of Computation Time with Computa-
tional Markets. Master’s thesis, Department of Electrical Engineering and
Computer Science, MIT, May 1994.

[4] S. Clearwater, editor.Market-Based Control: A Paradigm for Distributed
Resource Allocation. World Scientific, 1996.

[5] G. Coulson, G. Blair, P. Robin, and D. Shepherd. Supporting Continuous
Media Applications in a Micro-Kernel Environment. In O. Spaniol, editor,
Architecture and Protocols for High-Speed Networks. Kluwer Academic
Publishers, 1994.

[6] M. B. Jones, P. J. Leach, R. Draves, and J. S. Barrera. Modular Real-Time
Resource Management in the Rialto Operating System. InProceedings
of the 5th Workshop on Hot Topics in Operating Systems (HotOS-V), May
1995.

[7] F. P. Kelly. Charging and rate control for elastic traffic.European Trans-
actions on Telecommunications, 8:33–37, 1997.

[8] J. Kurose and R. Simha. A Microeconomic Approach to Optimal Resource
Allocation in Distributed Computer Systems.IEEE Transactions on Com-
puters, 38(5):705–717, May 1989.

[9] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,
R. Fairbairns, and E. Hyden. The Design and Implementation of an Oper-
ating System to Support Distributed Multimedia Applications.IEEE Jour-
nal on Selected Areas In Communications, 14(7):1280–1297, September
1996.

[10] J. K. MacKie-Mason and H. R. Varian. Pricing Congestable Network Re-
sources. http://www-personal.umich.edu/ jmm/papers/gep.pdf, 1994.

[11] M. S. Miller and K. E. Drexler. Incentive Engineering for Computation
Resource Management. In B. A. Huberman, editor,The ecology of Com-
putation, pages 231–266. North-Holland, Amsterdam, Netherlands, 1988.

[12] M. S. Miller, D. Krieger, N. Hardy, C. Hibbert, and E. D. Tribble. An
Automated Auction in ATM Network Bandwidth. In Clearwater [4], pages
96–125.

[13] J. Nieh and M. S. Lam. The Design, Implementation and Evaluation of
SMART: A Scheduler for Multimedia Applications. InProceedings of the
16th ACM SIGOPS Symposium on Operating Systems Principles, Operat-
ing Systems Review, pages 184–197, Saint-Malo, France, October 1997.

[14] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource Kernels: A
Resource-Centric Approach to Real-Time Systems. InProceedings of the
SPIE/ACM Conference on Multimedia Computing and Networking, Jan-
uary 1998.

[15] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A Resource Alloca-
tion Model for QoS Management. InProceedings of the IEEE Real-Time
Systems Symposium, December 1997.

[16] B. Sabata, S. Chatterjee, M. Davis, J. Sydir, and T. Lawrence. Taxonomy
for QoS Specifications. InProceedings of Workshop on Object-oriented
Real-time Dependable Systems (WORDS 97), Newport Beach, CA, USA,
Feb. 1997.

[17] S. Shenker. Fundamental Design Issues for the Future Internet.IEEE Jour-
nal on Selected Areas In Communications, 13(7):1176–1188, September
1995.

[18] N. Stratford and R. Mortier. An Economic Approach to Adaptive Re-
source Management. InProceedings of the 7th Workshop on Hot Topics
in Operating Systems (HotOS-VII), Rio Rico, AZ, USA, Mar. 1999.

[19] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and S. Stor-
netta. Spawn: A Distributed Computational Economy.IEEE Transactions
on Software Engineering, 18(2):103–117, February 1992.

[20] W. Walsh, M. Wellman, P. Wurman, and J. MacKie-Mason. Some Eco-
nomics of Market-Based Distributed Scheduling. InProceedings of the
18th International Conference on Distributed Computing Systems, Ams-
terdam, Netherlands, 1998.


