
Quality of Service Support for Legacy Applications

Jos�e Brustoloni, Eran Gabber, Abraham Silberschatz and Amit Singh

Information Sciences Research Center

Lucent Technologies | Bell Laboratories

600 Mountain Avenue, Murray Hill, NJ 07974, USA

fjcb, eran, avi, amitsinghg@research.bell-labs.com

Abstract

Many existing digital audio and video applications
assume overprovisioning. Such applications perform
well on dedicated, lightly loaded systems, but may
perform badly in cases of server hot spots or net-
work congestion. We present Eclipse/BSD's solu-
tion for running such applications automatically un-
der resource reservations that guarantee the required
performance. The key idea in our solution is to give
�les a new attribute | the resource requirement.
We then interpose between legacy applications and
the operating system a modi�ed version of the libc
library, dynamically linked with applications at load
time. The modi�ed library intercepts certain system
calls and automatically establishes resource reserva-
tions according to the requirements of the accessed
�les, whether local or remote.

1 Introduction

Digital audio and video applications require su�-
cient resources, including CPU, memory, and net-
work and disk bandwidth, in order to perform
properly. However, conventional time-sharing op-
erating systems, such as Unix [9] and Windows
NT [5], and best-e�ort networks, such as the current-
generation Internet, cannot guarantee resource avail-
ability in the amount required by any given appli-
cation. Therefore, these applications may often not
perform as expected.

Discussions on how best to solve this problem are
often polarized. One possible solution is to provide
quality of service guarantees and admission control :
Operating systems and networks are modi�ed so
that the system admits a request only if the system
has set aside su�cient resources to guarantee that it

will satisfy the request within speci�ed performance
bounds. The opposite solution is overprovisioning :
Simply assume that the total amount of resources
tends to be larger than a worst-case workload would
demand.

Because deployment of systems with quality of ser-
vice guarantees has been slow, many existing digital
audio and video applications assume overprovision-
ing. Such applications may perform well on dedi-
cated systems, in absence of other load, but perform
poorly, for example, in cases of server hot spots or
network congestion.

Slowly but surely, however, systems that do pro-
vide quality of service guarantees are being intro-
duced. In a recent paper [3], for example, we de-
scribed Eclipse/BSD, a new operating system that
allows applications to set up resource reservations
and thereby guarantee performance within certain
bounds. We implemented Eclipse/BSD by modify-
ing FreeBSD, a freely available derivative of 4.4 BSD
Unix [9].

This paper's contribution is to show how legacy ap-
plications may, without being modi�ed, enjoy qual-
ity of service guarantees on Eclipse/BSD. This al-
lows certain applications that were written assuming
overprovisioning to run well even on systems that
are neither dedicated nor lightly loaded. The key
idea in our solution is to give �les a new attribute
| the resource requirement . We then interpose be-
tween legacy applications and the operating system
a modi�ed version of the libc library, dynamically
linked with applications at load time. The modi�ed
library intercepts certain system calls and automat-
ically establishes resource reservations according to
the requirements of the accessed �les, whether local
or remote.

The rest of this paper is organized as follows.

queues’ shares

q2 Request
q2

q3

q4

q1

Scheduler Resource

According to

Figure 1: Eclipse/BSD's schedulers apportion resources to each queue according to the queue's share.

Resources

/mem /fxp0 /sd0

/share /newreserv /newqueue /q0 /q1 /q2

/share /backlog

/reserv

To create a child
internal reservation

or queue

Portion of resource

/cpu

Figure 2: Eclipse/BSD's /reserv �le system allows applications to create resource reservations.

Section 2 reviews how applications can create re-
source reservations in Eclipse/BSD. Section 3 then
describes how Eclipse/BSD supports resource re-
quirements, including NFS extensions for making
ephemeral reservations with the required resources.
Section 4 introduces requirement brokers , which es-
tablish the required resource reservations automati-
cally. The resource reservations created by a broker
are children of the application's root reservations;
Section 5 shows how users can set such reservations
from the shell, before invoking the application. Ex-
periments in section 6 demonstrate that brokers can
guarantee to unmodi�ed existing applications the re-
quired performance. Section 7 discusses related and
future work, and section 8 concludes.

2 Resource reservations

This section summarizes our previous work [3], de-
scribing how Eclipse/BSD applications can hierar-
chically create, use, or destroy resource reservations.

Eclipse/BSD uses a hierarchical proportional shar-
ing scheduler to manage each independent physical
resource, such as CPU, memory, network and disk
bandwidth. Every request arriving at a scheduler
must specify a queue, and the scheduler apportions
resources to each queue according to the queue's
share, as shown in Figure 1. Eclipse/BSD's sched-
ulers are di�erent from those of FreeBSD, which do
not provide hierarchical proportional sharing. For
example, Eclipse/BSD uses, for CPU scheduling, the
MTR-LS algorithm [2]; for disk scheduling, the new
YFQ algorithm [4]; for network output link schedul-
ing, Bennet and Zhang's H-WF2Q algorithm [1].

Eclipse/BSD applications create resource reserva-
tions using the new /reserv �le system. In /reserv,
resource reservations are represented by directories.
Resource reservations are called internal reserva-
tions if they can have children, or queues if they can-
not. Each independently managed physical resource
in the system is represented by an internal reser-
vation under /reserv: for example, CPU, mem-
ory, network and disk bandwidth, as shown in Fig-
ure 2. Each resource reservation r has a share �le,

which speci�es r's portion of its parent's resources.
share contains two values: the minimum absolute
value, used for admission control, and the weight
with which r shares its parent's resources. If r's
parent is /reserv, then r's share �le is read-only
and represents the resource in its entirety. An ap-
plication creates an internal reservation or queue as
a child of an internal reservation r by opening r's
newreserv or newqueue �le, respectively; the open
call returns the �le descriptor of the newly created
share �le, which is initially null. Writes to share

�les may fail due to admission control. A new com-
mand to the fcntl system call, F SHARE WAIT,
allows a process to block until the previous failed
write to share may succeed if retried.

A process p's reservation domain is the list of p's
internal root reservations for each resource1. A pro-
cess p can open newreserv or newqueue only in
internal reservations that are equal to or descend
from one of p's root reservations, and can write
into share �les only in resource reservations that
descend from p's root reservations. Queue q0 of
process p's root reservation r is called p's default
queue for the respective resource. The reservation
domain of process pid is represented by the read-
only �le /proc/pid/rdom. The reservation domain
of processes spawned by process pid is initialized to
the contents of the writable �le /proc/pid/crdom,
which must contain internal reservations that are
equal to or descend from pid's root reservations.

In Eclipse/BSD, di�erent requests may specify the
same object but di�erent queues. For example, two
processes may be in di�erent reservation domains
and each need to use a di�erent disk queue to ac-
cess a shared �le, or a di�erent network output link
queue to send packets over a shared socket. There-
fore, Eclipse/BSD queues are associated with ref-
erences to shared objects, rather than the shared
objects themselves.

In the case of input/output (I/O) objects, such
as vnodes and sockets, each �le descriptor that
refers to the object also contains a pointer to a
queue. Eclipse/BSD copies that queue pointer to
the I/O requests issued on that �le descriptor.
Note that �le descriptors can be private, even if
the referred object is not. The �le descriptor's
queue pointer is initialized to the process's default
queue for the respective device: for vnodes, at
open time; for connected sockets, at connect or

1Note that our current concept of reservation domain is
somewhat di�erent from that in our previous work [2].

accept time; for unconnected sockets, at sendto

or sendmsg time. However, the fcntl system call
gets two new commands: F QUEUE SET, for set-
ting a �le descriptor's pointer to a di�erent queue,
and F QUEUE GET, for obtaining the name of the
queue to which a �le descriptor points.

Each resource reservation r has a reference count.
The �le descriptor of r's share �le points to r; ad-
ditionally, rdom and crdom �les and various �le de-
scriptors may refer to r, as explained in the previous
paragraphs. If r's reference count falls to zero and
r's GC
ag is enabled (default), Eclipse/BSD garbage
collects r. Privileged processes can use new com-
mands to the fcntl system call, F COLLECT SET
or F COLLECT GET, to set or get a resource reser-
vation's GC
ag.

3 Resource requirements

The previous section explained why resource reser-
vations usually should not be attributes of shared
objects, such as �les and sockets: Each reference
to the object should use its own, possibly di�erent
reservation. On the contrary, however, the resource
requirements of a shared object often are well de-
�ned. This is particularly true for media streams:
The data rate for digital audio or video strips often
is well-known or can be easily bounded. This section
describes how Eclipse/BSD supports resource re-
quirements and how new applications may use such
support.

In Eclipse/BSD, �les get a new attribute,
resource req, that speci�es the �le's nominal
data rate, in Kbps. For example, a �le containing a
video strip might have resource req equal to 1500
(that is, 1.5 Mbps).

Eclipse/BSD stores resource req in the �le's inode.
Applications use two new commands to the fcntl

system call, F RREQ SET and F RREQ GET, to
set or get a �le's resource req, respectively. The
permissions necessary for these commands are the
same as those for writing or reading the �le, respec-
tively. A new utility, chrreq, uses these commands
to make it possible to set or get a �le's resource req

from the shell.

For distributed �le systems to be able to set or get
resource req, the client/server protocol used may

descriptor
Network
interface

Client IP
address pid

File
handle

Hash

Expiration
File
Disk queue
NW queue

Timeout queue

Request

file system
Local

Reply

NextClient Ephemeral

Figure 3: Eclipse/BSD's NFS server uses ephemeral descriptors to keep track of queues created for accessing
and transmitting �les with the required resources.

need to extended, either by introducing new request
types or by adding resource req to the �le at-
tributes that are transfered in existing request types.
For example, in NFS [9], the client could invoke ei-
ther new procedures or new versions of the exist-
ing GETATTR and SETATTR procedures (Eclipse/BSD
opted for the latter2).

Eclipse/BSD o�ers a new command for the fcntl

system call, F QUEUE CREATE AND SET, that,
applied to a �le descriptor fd that references a local
�le f , (1) automatically creates a new disk queue
whose share matches f 's requirements, and (2) sets
fd's queue pointer to that queue. The command's ar-
gument speci�es whether the �le will be read and/or
written. If f 's resource req is null, no queue is cre-
ated and an error is returned; otherwise, the new
queue is created as a child of the process's root
reservation for the device where the �le is located.
If the queue's share cannot be set according to
resource req, due to admission control, then share

is closed (causing the queue to be garbage collected)
and an error is returned. Otherwise, fd's queue
pointer is set to the new queue, share is closed, and
success is returned. Because fd's is the only remain-
ing reference to the new queue, that queue will be
automatically garbage collected when the applica-
tion closes fd .

If, on the other hand, �le descriptor fd references a
remote �le f , then F QUEUE CREATE AND SET
requires queues that match f 's requirements to be
created at the server's disk and client and server
network interfaces. Client queues and, for state-
ful distributed �le systems, also server queues, can
be created analogously to the local case, described

2If an Eclipse/BSD NFS client receives an error indication
from a legacy NFS server, the client reverts to the standard
versions of those procedures.

in the previous paragraph. However, stateless dis-
tributed �le systems, such as NFS, require ephemeral
server queues, which are garbage collected by time-
out, instead of when f is closed. In such cases,
F QUEUE CREATE AND SET sets fd's QCS
ag
(which by default is not set). If fd's QCS
ag is set,
Eclipse/BSD uses new versions of NFS's READ and
WRITE procedures2 for I/O through fd. Requests in
the new versions include not only the �le handle, re-
turned by the server, but also the process identi�er
of the client process. When an Eclipse/BSD NFS
server receives one such request, the server hashes
the client IP address, process identi�er, and �le han-
dle to �nd an ephemeral descriptor , as shown in Fig-
ure 3. An ephemeral descriptor contains pointers to
the �le and to a disk queue and a network inter-
face queue matching the �le's requirements. The
server uses the descriptor's queues on accesses to
the �le by the respective client. Ephemeral descrip-
tors also contain an expiration time and are linked
in a timeout queue. Each time a request hashes
to an ephemeral descriptor, that descriptor's expi-
ration is extended. When current time exceeds a
descriptor's expiration time, the descriptor's refer-
enced queues and the descriptor itself are garbage
collected. On the other hand, if a given request does
not hash to any existing descriptor, the server allo-
cates a new descriptor, creates new disk and network
interface queues matching the accessed �le's require-
ments, and makes the new descriptor point to the �le
and the new queues.

Eclipse/BSD does not make F QUEUE CREATE -
AND SET implicit in every open call because, in
some cases, a �le's resource requirements are irrel-
evant. For example, when a �le is being copied, it
does not require any particular data rate, even if the
�le contains a video strip.

4 Requirement brokers

The previous section shows that after open-
ing a local or remote �le, an Eclipse/BSD
application can use a new fcntl command,
F QUEUE CREATE AND SET, to guarantee the
required resources for accessing the �le. Because
that command is new, however, it does not bene-
�t legacy applications. This section explains how
Eclipse/BSD can support also such applications.

In Eclipse/BSD, users may interpose a requirement
broker between a legacy application and the oper-
ating system. Such broker intercepts certain system
calls and automatically establishes resource reserva-
tions according to resource requirements.

Requirement brokers that are used by many appli-
cations may be implemented by modifying the sys-
tem's libc library, which is dynamically linked with
applications at load time. Users may set environ-
ment variables to enable or disable brokers imple-
mented within libc. On the other hand, a require-
ment broker for a speci�c application /path/app
may be implemented by rede�ning intercepted sys-
tem calls in a new library, /pathl/libapp.so, that
is dynamically pre-linked with /path/app before
libc. A user may cause such pre-linking by moving
/path/app to /path/app.leg and de�ning a new
script /path/app:

#! /bin/sh

LD_PRELOAD=/pathl/libapp.so /path/app.leg $*

Eclipse/BSD's �le system broker is implemented by
modifying libc and is enabled by environment vari-
able AUTO FILE RESERV. Such broker intercepts
only open calls; if the call is successful, the broker in-
vokes fcntl F QUEUE CREATE AND SET. The
�le system broker therefore causes even unmodi�ed
existing applications to access local or remote �les
automatically with the required reservations.

A network broker can also be de�ned for
each application-level client/server protocol (e.g.,
HTTP). Network brokers typically are implemented
by speci�c pre-linked libraries and usually must
intercept more system calls than do �le system
brokers. Network brokers may need to inter-
cept socket, connect, accept, and close sys-
tem calls so as to maintain a list of the process's
open sockets and their state. They may also need to
intercept write, send, sendto, sendmsg, read,

recv, recvfrom, and rcvmsg calls on sockets in or-
der to eavesdrop on requests and replies and keep
track of what �les are being accessed over what sock-
ets. If the protocol supports only whole-�le trans-
fers, �le access begins with a request and ends with
the corresponding reply. Otherwise, in stateful pro-
tocols, access to a �le may begin with an open re-
quest and end with a close request; in stateless pro-
tocols, access to a �le may begin with a fetch or
store request and may be presumed to have ended a
certain timeout after the last fetch or store request.

When network access to a �le begins, the net-
work broker consults the �le's resource requirements
and creates a queue of matching share as a child
of the process's root reservation for the respective
network interface (the broker may invoke fcntl

F SHARE WAIT to block until the required share

is obtained). The broker sets to the new queue the
queue pointer of the �le descriptor fd used to send or
receive the �le. The broker also closes share, so that
fd's is the only reference to the new queue. When
access to the �le ends, the broker closes fd , causing
the queue to be garbage collected.

If multiple �les are accessed over the same socket,
the network broker may need to dup the socket's �le
descriptor for each �le. Each duped descriptor can
point to a queue with the respective �le's required
resources. The broker then converts between orig-
inal and duped descriptors on each fetch or store
request or reply on a �le.

However, network brokers need not be complex.
The network broker for ftpd (Eclipse/BSD's FTP
server daemon), for example, intercepts the read,
open, connect, and close system calls. The bro-
ker snoops read calls on the control socket to de-
tect RETR filename (retrieve) and STOR filename

(store) commands from the client. In such cases, the
broker records the �le name and corresponding re-
source requirements. At the subsequent open and
connect calls, respectively, the broker creates and
sets disk and network queues matching the require-
ments. The broker destroys those queues at the sub-
sequent close call.

The above �le system and network brokers ignore
CPU and memory requirements. More sophisticated
brokers adjust the application's CPU and memory
reservations according to CPU and memory require-
ment templates , which can be static or dynamic.
A static template gives for each application the re-
quired CPU (in SPECint95) and memory (in KB),

regardless of �le accesses. A dynamic template gives,
for each application and name extension of a �le ac-
cessed by the application, the additional CPU and
memory requirement. Additional requirements are
the sum of a �xed term and the product of a variable
term and the accessed �le's resource req. CPU and
memory requirement templates are experimentally
determined and maintained by the system adminis-
trator.

5 Setting an application's reservation

domain from the shell

As explained in the previous section, requirement
brokers act on behalf of legacy applications to au-
tomatically create queues that match the resource
requirements of accessed �les. Such queues are chil-
dren of the application's root reservations. This sec-
tion shows how users can set an application's reser-
vation domain (i.e., the root reservations) from the
shell.

Eclipse/BSD provides a new utility, newreserv, for
creating a new internal reservation that is a child of
a named internal reservation. The created internal
reservation is not garbage collected when the util-
ity exits because the utility has set-user-id mode
set and runs as a privileged process, which can
use fcntl F COLLECT SET to prevent a resource
reservation's garbage collection. newreserv prints
the name of the new internal reservation.

Before using newreserv, users will typically need to
invoke ps to determine the shell's process id, s, and
then �nd the shell's reservation domain by invoking
cat /proc/s/rdom. Given the shell's root reserva-
tions, users can then create new internal reserva-
tions using newreserv. To set the share of resource
reservation b of resource a, users may invoke cat >

/reserv/a/b/share. Finally, users can use cat >

/proc/s/crdom to set the shell's crdom �le to a list
of internal reservations that are equal to or descend
from the shell's root reservations. Applications will
be started from the shell with reservation domain
(rdom) equal to the shell's crdom �le.

6 Experimental results

This section demonstrates experimentally that
Eclipse/BSD's brokers work as expected both in lo-
cal and in remote �le accesses, automatically reserv-
ing resources according to the �le requirements.

We performed our experiments on a pair of PCs con-
nected by a lightly loaded Ethernet at 100 Mbps.
Both PCs ran either the FreeBSD 2.2.8 or the
Eclipse/BSD operating system. The server PC had
a 266 MHz Pentium II CPU, 64 MB RAM, and a 9
GB SCSI disk. The client PC had a 133 MHz Pen-
tium CPU, 32 MB RAM, and a 4.3 GB IDE disk.

A series of experiments tested Eclipse/BSD's NFS
extensions and �le system broker. In these experi-
ments, applications A, B, C, and D simultaneously
read each a di�erent 100 MB �le (respectively, fA,
fB , fC , and fD) with requirement respectively of
2.4, 1.8, 1.2, and 0.6 Mbps. Applications ran either
all on the client PC or all on the server PC; �les
remained always on the disk of the server PC. To
prevent cache e�ects, applications read very large
unrelated �les before each experiment. There was
no other load on the PCs. To ensure repeatable and
nearly worst-case conditions, sectors of each �le were
perfectly interleaved on the disk. Each application
measured its throughput by, each two seconds, di-
viding by such period the number of bytes read by
the application since the previous measurement.

Figures 4 and 5 show the throughput obtained by
each application when the applications ran on the
server PC (local �le access) using either FreeBSD
or Eclipse/BSD and �le system broker, respectively.
The �gures show that FreeBSD has much higher
throughput variance and that Eclipse/BSD's �le sys-
tem broker automatically and correctly discrimi-
nates the di�erent �le requirements3.

Similar results are shown in Figures 6 and 7 for the
case where the applications ran on the client PC (re-
mote �le access). FreeBSD does not discriminate the

3Because in these experiments the �les are perfectly inter-
leaved but are sequentially read at di�erent rates, seek over-
heads gradually increase. Our current implementation uses a
disk scheduling algorithm, YFQ [4], that does not properly
account for the absolute impact of seek overheads (it guaran-
tees only proportional sharing of net disk bandwidth). This
causes the decaying absolute throughputs shown in Figures 5
and 7. We veri�ed experimentally that absolute throughputs
are nearly proportionally shared and constant if �les are ac-
cessed randomly (causing average seek overheads to remain
nearly constant).

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

File A (2.4 Mbps)
File B (1.8 Mbps)
File C (1.2 Mbps)
File D (0.6 Mbps)

Figure 4: FreeBSD gives widely variable but similar
throughput to all applications accessing local �les.

applications, giving too little or too much bandwidth
to di�erent applications at di�erent times. On the
contrary, Eclipse/BSD's �le system broker automat-
ically gives to each application the required perfor-
mance.

A �nal experiment tested Eclipse/BSD's FTP bro-
ker. In this experiment, each of three FTP clients
A, B, and C simultaneously retrieved a large (> 100
MB) �le (respectively, fA, fB , and fC) with a re-
quirement respectively of 3.6, 2.4, and 1.2 Mbps.
Our measurements showed that Eclipse/BSD's FTP
broker indeed caused each �le to be transferred with
the required bandwidth.

7 Related and future work

An alternative that may be of interest is associ-
ating resource req with �le type, instead of with
individual �les, as we did here. For example, the
system could use a database that speci�es that all
�les whose name has a certain extension have a cor-
responding resource req. Such scheme would be
less
exible than the one presented here, since pre-
sumably only the system administrator would be
able to change the database. On the other hand,
a replicated database could make consulting a �le's

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

File A (2.4 Mbps)
File B (1.8 Mbps)
File C (1.2 Mbps)
File D (0.6 Mbps)

Figure 5: Eclipse/BSD's �le system broker automat-
ically creates disk queues that give each application
the required performance for accessing local �les.

requirements faster, particularly in wide area net-
works.

SLIC [6] allows interposition of kernel events, such
as system calls and signals, by trusted kernel exten-
sions. Requirement brokers could be implemented
as SLIC extensions, but then their installation would
require intervention of the system administrator, un-
like the solution presented here. Requirement bro-
kers actually need not be trusted, since they use sys-
tem primitives just like any application. This allows
us to implement brokers at user level, as described
in this paper, by modifying libc.

Odyssey [11] is a framework for resource manage-
ment in mobile systems. Odyssey does not provide
quality of service guarantees, which are di�cult to
achieve in mobile environments. Instead, Odyssey
monitors available resources and noti�es applica-
tions when relevant changes happen; applications
then adapt by operating at di�erent �delity lev-
els. Odyssey's Cellophane is analogous to a network
broker: It permits a legacy application, Netscape,
to adapt using Odyssey primitives. Interposition is
in this case simpli�ed by Netscape's proxy facility,
which redirects requests and makes it unnecessary
to eavesdrop on sockets.

Eclipse/BSD provides hierarchical proportional re-

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300 350 400 450

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

File A (2.4 Mbps)
File B (1.8 Mbps)
File C (1.2 Mbps)
File D (0.6 Mbps)

Figure 6: FreeBSD's NFS does not discriminate be-
tween applications, giving bandwidth that is some-
times excessive, sometimes de�cient.

source sharing, which is useful in soft real time and
certain multimedia applications. It would be inter-
esting to investigate whether Eclipse/BSD's notions
of resource requirements and requirement brokers
could be adapted to systems that support hard real
time applications, such as Nemesis [8], SMART [10],
and Rialto [7].

8 Conclusions

Eclipse/BSD is an operating system that is de-
rived from FreeBSD and that provides hierar-
chical proportional resource sharing. We previ-
ously had shown how new applications can exploit
Eclipse/BSD's resource reservations to guarantee
performance within certain bounds. In this paper,
we presented how Eclipse/BSD supports the com-
plementary notion of resource requirements, both in
the local and the remote case. In particular, we de-
scribed extensions to NFS that enable it to make
reservations and thereby provide a required quality
of service. We then demonstrated experimentally
that by interposing requirement brokers | modi�ed
versions of libc that intercept certain system calls
| Eclipse/BSD can run unmodi�ed legacy applica-
tions automatically under reservations that guaran-

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

File A (2.4 Mbps)
File B (1.8 Mbps)
File C (1.2 Mbps)
File D (0.6 Mbps)

Figure 7: Eclipse/BSD's �le system broker and NFS
extensions give to each application the required per-
formance.

tee the required performance.

Quality of service support is likely to evolve dra-
matically in the near future with the introduction
of di�erentiated-service networks and new operat-
ing systems. We believe that the notion of resource
requirements and the interposition of requirement
brokers similar to the ones described here may help
existing applications bene�t from the improved qual-
ity of service of future systems.

Acknowledgments

We thank John Bruno and Banu �Ozden for valuable
discussions during the design phase of this work.

References

[1] J. Bennet and H. Zhang. \Hierarchical Packet
Fair Queueing Algorithms", in Proc. SIG-
COMM'96, ACM, Aug. 1996.

[2] J. Bruno, E. Gabber, B. �Ozden and A. Silber-
schatz. \The Eclipse Operating System: Pro-
viding Quality of Service via Reservation Do-

mains", in Proc. Annual Tech. Conf., USENIX,
June 1998, pp. 235-246.

[3] J. Bruno, J. Brustoloni, E. Gabber, B. �Ozden,
and A. Silberschatz. \Retro�tting Quality of
Service into a Time-Sharing Operating Sys-
tem", to appear in Proc. Annual Tech. Conf.,
USENIX, June 1999.

[4] J. Bruno, J. Brustoloni, E. Gabber, B. �Ozden
and A. Silberschatz. \Disk Scheduling with
Quality of Service Guarantees", to appear in
Proc. ICMCS'99, IEEE, June 1999.

[5] H. Custer. \Inside Windows NT", Microsoft
Press, 1993.

[6] D. Ghormley, D. Petrou, S. Rodrigues and T.
Anderson. \SLIC: An Extensibility System for
Commodity Operating Systems", in Proc. An-
nual Tech. Conf., USENIX, June 1998.

[7] M. Jones, D. Rosu and M. Rosu. \CPU Reser-
vations and Time Constraints: E�cient, Pre-
dictable Scheduling of Independent Activities",
in Proc. SOSP'97, ACM, Oct. 1997, pp. 198-
211.

[8] I. Leslie, D. McAuley, R. Black, T. Roscoe, P.
Barham, D. Evers, R. Fairbairns and E. Hyden.
\The Design and Implementation of an Oper-
ating System to Support Distributed Multime-
dia Applications", in JSAC, 14(7), IEEE, Sept.
1996, pp. 1280-1297.

[9] M. McKusick, K. Bostic, M. Karels and J.
Quarterman. \The Design and Implementation
of the 4.4 BSD Operating System", Addison-
Wesley Pub. Co., Reading, MA, 1996.

[10] J. Nieh and M. Lam. \The Design, Implementa-
tion and Evaluation of SMART: A Scheduler for
Multimedia Applications", in Proc. SOSP'97,
ACM, Oct. 1997, pp. 184-197.

[11] B. Noble, M. Satyanarayanan, D. Narayanan, J.
Tilton, J. Flinn, K. Walker. \Agile Application-
Aware Adaptation for Mobility", in Proc.
SOSP'97, ACM, Oct. 1997, pp. 276-287.

