
Abstract
Networked appliances are easy to use devices that are designed
and built for a single function. This paper presents the design
and implementation of a networked appliance for packet tele-
phony. We examine the practical issues involved in the design
and implementation of the appliance at all layers, including
hardware architecture, system services, and the application. At
each layer, we identify important challenges and describe the
solutions that we implemented. Our packet telephony appliance
is built around the Euphony network processor that integrates
networking and DSP functions with a CPU. It uses a real-time
operating system to provide predictable processing and net-
working support. In addition to describing the appliance, this
paper presents two mechanisms which are of general use in the
design of networked appliances. One mechanism isIObufs,
which provides a unified buffering scheme that allows zero-copy
data movement. Another is the Event Exchange (EVX), which
provides a flexible mechanism for event distribution, allowing
software modules to be composed together in an extensible man-
ner. EVX and IObufs are used together to provide highly effi-
cient intra-appliance communication. The combination of EVX
and a general-purpose CPU provide a platform that can evolve
gracefully to support new protocols, advanced telephony ser-
vices, and enhanced user interfaces.

1   Introduction

The potential cost savings of using data networks for intra-
company telecommunications are well recognized, and many
companies are interconnecting their office PBXs using corpo-
rate intranets. Given that most office environments are also
equipped with high-speed LANs, there is an opportunity for
additional cost savings by extending packet telephony to the
desktop, thus eliminating the need to maintain two separate
office networks. With greater penetration of high-speed resi-
dential access and new technologies for in-home networking,
similar opportunities exist for using packet telephony in the
home.

These developments raise the question of what types of
devices people might use to access packet telephony services,
motivating the work we present in this paper. It is clear that to
capitalize on the new opportunities presented by packet tele-
phony requires devices that can process multimedia data and
implement new user interfaces. The use of PCs as telephony
devices is hampered by several factors including software/
hardware installation and configuration difficulties, low voice
quality due to operating system latencies and scheduling idio-
syncrasies, and expense in comparison to most consumer
appliances. In addition, PCs are relatively large, generate

noise and heat, and can be difficult to use. We believe that
new special-purpose telephone appliances are the best solu-
tion.

In this paper we present the hardware and software architec-
ture of a packet telephony appliance. Our work was guided by
four basic principles: low cost, extensibility, ease of use, and
reliability. Low cost is a crucial factor for consumer devices.
Our design addresses this issue through aggressive integration
of hardware functions, retaining a basic keypad as the default
input device (but supporting remote and attached GUIs), and
having low memory requirements by using a small real-time
operating system and zero-copy techniques. Our second
design principle isextensibility. Despite a wealth of experi-
ence with packet voice, the field of packet telephony is in its
infancy and lacking standards. Thus it is essential that a
packet telephony appliance be designed to operate under soft-
ware control and be able to accommodate new protocols and
services as they appear. This is not the case with currently
available telephony appliances. We present an event commu-
nication mechanism that allows easy integration of new soft-
ware modules on the appliance. Our third principle isease of
use. Telephones must be designed for ordinary people who
have no technical background and are unwilling to invest time
in setting up and configuring new appliances. By retaining the
simple keypad we provide users with a familiar interface. For
basic telephony service the appliance needs no user configu-
ration, plug-in components or additional audio equipment.
Finally, consumer appliances are expected to operate to a high
level of reliability despite being used in possibly hostile phys-
ical environments and to operate in an “always on” power
state. For these reasons we avoided the temptation to use a
CPU that requires cooling, used solid state Flash memory
rather than a hard drive, and did not include an integrated dis-
play. In terms of software, we minimized the phone’s reliance
on external systems when providing a highly reliablebasic
telephone service.

The goal of our project is to investigate the practical issues
involved in designing and implementing a packet telephony
appliance. We examine the design space at all layers, includ-
ing hardware, system services, and the application. At each
layer we identify the challenges and propose appropriate
solutions. Our contribution is a comprehensive hardware and
software architecture that includes a low-cost integrated net-
work processor, a lightweight call signaling implementation,
a modular and extensible telephony application design, and
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an event exchange mechanism for flexible inter-module com-
munication. The Euphony ATM Telephone (EAT) is our cus-
tom built packet telephone appliance, shown in Figure 1. It
looks much like a conventional telephone and can be used
without any training in order to access basic telephony ser-
vice. It allows many familiar telephony features, such as call
waiting, to be implemented locally. It also provides access to
networked servers that implement functions such as speech-
enabled dialing and call by name.

In the next section we describe the system environment in
which EAT operates and elements of our packet telephony
infrastructure. Section 3 describes hardware architecture.
Section 4 discusses software system services while Section 5
presents the telephony application. Sections 6 & 7 discuss
related and future work. Finally, Section 8 offers conclusions.

2   Packet Telephony Environment

There are many ongoing activities in the standards and
research communities that relate to packet telephony. For
example, the ITU has defined the H.323 [9] family of proto-
cols for multimedia communication, and the IETF is stan-
dardizing the Session Initiation Protocol (SIP) [8] as a
mechanism for setting up calls. At AT&T Labs, theTele-
phony Over Packet Networks (TOPS) [2] architecture
addresses several aspects of packet telephony. Many key
issues are still topics for research, including quality of ser-
vice, security, privacy, authentication, and billing. Fortu-
nately, the functional components of a packet telephone are
largely independent of the underlying networking technology,
signaling, and directory services employed. The packet tele-
phony appliance described in this paper is based on the TOPS
architecture, but is designed to easily evolve to support new
standards. To aid in understanding the functionality required
of our packet telephone, we provide a brief overview of the
TOPS architecture.

A guiding principle of TOPS is to make it more convenient to
reach a user. A packet telephony service requires a directory
service function that can translate between telephone num-

bers and network layer addresses, such as IP or ATM
addresses. This simple functionality is enhanced in TOPS to
allow callers to reach a person using a Distinguishing Name
(DN) rather than an address by storing information in the
directory service about DNs and the set of devices where
users can be reached. A DN is a unique identifier for the per-
son or entity to be called and may be an X.500 distinguishing
name, an e-mail address, or a traditional telephone number.
Callers obtain terminal addresses of users by issuing a name
resolution query to the directory service. As users move
between terminals, they can securely modify their record
entries to reflect the locations where they can be reached.
Thus, user mobility is supported as a fundamental capability
of TOPS.

The directory service provides a mechanism for individual
users to control how a name resolution query is handled, for
example based on time of day or caller identity. Thus, users
can customize access to their information. Compared to exist-
ing telephony features such as “personal phone numbers” and
“intelligent 800-number” services, this approach is more flex-
ible while also giving more control to the user. TOPS termi-
nals range from computers running telephony applications to
low-cost packet telephony appliances. Terminal capabilities
are stored in the directory and returned to the caller as part of
name resolution so that appropriate communication resources
can be setup.

Functions provided by the traditional telephone network, such
as routing, connectivity, and resource management, are
already supported by packet networks. This, coupled with
intelligent end-systems reduces the need for intermediate net-
work entities to be involved in packet telephone calls. Packet
telephones in the TOPS architecture communicate directly
with each other using Application-Layer Signaling (ALS).
ALS is used to setup a call, negotiate capabilities, establish
and manage media channels, and terminate calls. TOPS
defines an efficient encapsulation format for audio data but
does not preclude the use of other formats.

We have constructed a packet telephony testbed to gain expe-
rience with the TOPS architecture. To ensure good quality
voice transport, we adopted ATM in our testbed as the under-
lying networking technology. Voice is carried over switched
virtual circuits which are established at call time. Other data
such as call signaling and directory interactions do not have
strict delay requirements and for simplicity are implemented
using IP over ATM. Our environment includes a gateway pro-
viding a bridge to a PBX. We have several other terminal
types in addition to EAT. These are: a PC-equipped with a
sound card running a telephony application, a PC acting as a
proxy for a set of analog telephones, and a voice-enabled
wireless PDA [6].

Figure 1. Euphony ATM Telephone



3   Hardware Architecture

The goal of prototyping EAT was to demonstrate that a packet
telephony appliance can be constructed that implements the
advanced services promised by packet telephony and does so
at a cost in line with consumer devices. Reliability and ease of
use were also important goals of the prototype. The central
component of EAT is Euphony [15,16], a network processor
which integrates computing, media processing, and network-
ing into a single low-cost VLSI device. Euphony was jointly
developed by AT&T Labs - Research and LSI Logic and
implemented using LSI Logic’s LCB500K 0.5 micron drawn
cell-based ASIC process. Euphony integrates many of the
functions required to build network appliances on-chip,
thereby reducing cost, power, and size.

Euphony is based on a MIPS RISC processor core that was
augmented with a single cycle pipelined multiplier and signal
processing instructions. Most of the system logic required to
build a complete system is contained within Euphony, includ-
ing the logic required to interface to standard SRAMs,
DRAMs, VRAMs, and many peripheral devices. Power-on
reset generation and a five channel DMA controller are pro-
vided on-chip. In addition, Euphony provides general purpose
I/O pins which may be configured as bit I/O ports or as inter-
rupts.

Euphony contains two primary I/O interfaces, a serial audio
port compatible with many popular A/Ds, D/As, and tele-
phone codecs and an ATM interface with architectural sup-
port for AAL5 segmentation and reassembly (SAR)
processing. Unlike traditional SARs which are either com-
pletely implemented in hardware or software, Euphony’s
ATM interface provides hardware support for time critical
functions, such as CRC-32 calculation, and leaves non-time
critical functions to software. The advantage of this approach
is that it provides good performance and only requires a small
amount of die area.

A block diagram of EAT is shown in Figure 2. EAT contains 4

MB of SRAM and 2 MB of Flash memory1. Although EAT is
targeted as a cost sensitive consumer device, we chose to pro-
totype the system using SRAM since it allowed us to experi-
ment with different memory speeds by changing the number
of wait-states used in SRAM accesses. A commercial version
would use DRAM connected to Euphony’s DRAM controller.

Euphony’s signal processing capabilities coupled with its
integrated serial port provides a good platform for packet tele-
phony audio processing. EAT has three audio input/output
interfaces: a telephone handset, a case mounted microphone
and speaker, and an external microphone/line input and line
output. The case speaker is used to generate telephone ring-
ing. This allows EAT to not only generate traditional tele-
phone ringing tones, but also allows the implementation of

services such as voice announcement. The case microphone
and speaker together may be used to implement a speaker
phone. The external microphone/line input and line output
support two audio channels (i.e., stereo operation) and allow
EAT to connect to external speakers and microphones.

The audio input and output interfaces are implemented by
connecting Euphony’s serial port to high quality 18-bit linear
A/D and D/A converters. Audio data format conversion, such
asµ-law, is performed in software. Two of Euphony’s DMA
channels are used to move data between memory and the A/D
and D/A converters. The sample rate for the A/D and D/A
may be independently selected to be 44.1 KHz, 32 KHz, or 8
KHz.

EAT is implemented using two circuit boards mounted within
a custom built plastic case. The system logic board, shown in
Figure 3, mounts in the base of the case and contains all of the
digital and analog components. A second I/O interface board
containing a keypad, four status LEDs, and a micro-switch
for the off-hook detector mounts at the top of the unit. The
system logic board and I/O interface board are connected
with a ribbon cable.

EAT connects to standard 25 Mbps ATM networks using
Euphony’s ATM interface. In addition to an ATM connection,
EAT contains two RS232 serial ports, a console and a debug
port. Only the console is available for external connections. A
PC-style DB9 connector on the back of the case can be con-
nected to external devices, such as a Palm Pilot or an LCD
touch display.

4   EAT System Software Services

In this section we examine the system-level software services
provided by EAT. These services consist of a real-time single1. Our packet telephony application together with all the system code occupies

about 2MB of SRAM and 1MB of Flash memory.

Figure 2. EAT Block Diagram
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address space operating system kernel, a zero-copy I/O buff-
ering mechanism used for communication within EAT, an
event-based mechanism for inter-module communication, and
an IP/ATM networking stack. Figure 4 shows EAT’s system
software environment.

4.1   Kernel

EAT loads and executes the VxWorks kernel on power-up.
Once booted, the VxWorks kernel can load applications from
a network server or from an onboard Flash file system. There
are several reasons why we chose VxWorks for EAT rather
than a standard operating system such as Linux. First, the
VxWorks kernel has mature support for multithreaded appli-
cations in an embedded systems environment while systems
such as Linux are optimized for a timesharing environment.
Second, VxWorks supports the real-time scheduling features
that our telephony applications require. Third, VxWorks has a
smaller memory footprint than traditional systems because
general purpose kernel features such as disk-based filesys-
tems, virtual memory, multiple address spaces, multiuser sup-
port, and user accounting are not relevant to the EAT
environment. In addition, like standard operating systems,
VxWorks provides a rich environment that supports dynamic
loading of application code and a socket-based TCP/IP net-
working stack, but unlike standard operating systems which
are self-hosting, VxWorks provides an excellent set of tools
for embedded systems development.

VxWorks has a single address space in which the kernel and
application threads execute. The thread scheduler supports
both timesharing and preemptive scheduling based on static
real-time priorities. VxWorks supports interprocess commu-
nication by providing pipes, message queues, and sema-
phores. Threads blocked on a semaphore can queue in priority
order. To minimize priority inversion for real-time threads,
VxWorks implements priority inheritance for semaphore
operations.

4.2 IObufs: A Uniform Buffering Mechanism for Zero
Copy Operation

To reduce memory usage and to avoid the additional latency
of data copying, we aggressively use copy reduction tech-

niques by taking advantage of EAT’s single address space
architecture. Our approach to achieving zero-copy is the use
of IObufs for storing and passing data.IObufs, whose struc-
ture is shown in Figure 5, are similar to “mbufs” used in
4BSD Unix systems [11]. Like mbufs,IObufs allow buffer
manipulation operations, such as linking to form larger pack-
ets, without data copying. In addition, application specific
information can be stored withinIObufs. Our ATM driver
uses this feature to store DMA state and partial CRC check-
sum information while transferring data betweenIObufsand
the network. The novel aspect of our system is the use of
IObufsas a uniform buffering mechanism across all modules
in EAT including the application and I/O subsystems. This
reduces data movement costs and enables cross subsystem
optimizations. In addition to this, we useIObufs with the
event exchange IPC mechanism described in the next section
to obtain benefits such as one to many communication and
flow control. Thus the combination of these two mechanisms
achieves integration of event distribution with data move-
ment.

Figure 3. EAT System Logic Board

Figure 4. EAT Software Architecture

Figure 5. IObuf Chain
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4.3 EVX: An Inter-Module Communications Mechanism

EAT applications consist of a number of interconnected soft-
ware modules. These modules come in two classes: those
which interface with hardware devices and those which
implement software services. The initial EAT software envi-
ronment did not define a mechanism for inter-module com-
munication. As a result, modules shared information and
synchronized themselves in an ad-hoc manner using
VxWorks interprocess communication mechanisms. This led
to three unfortunate limitations. First, modules were tightly
coupled making it difficult to reconfigure interconnections
without editing affected modules and recompiling. Determin-
ing module interconnection was also a challenge, since pre-
defined module calls were distributed throughout the
application. Second, our initial applications had a restricted
form of event delivery; an event producer could only deliver
an event to a single consumer. This is a limitation because we
found that multiple modules needed to receive the same types
of events, for example a keypad event needed to be sent to
both a tone generator module and a digit collection module.
Third, the lack of structured inter-module communication
coupled with EAT’s unprotected single address space blurred
the boundary between modules by allowing them to commu-
nicate by modifying each others global memory state rather
than using a well defined API. This later caused us problems
when reconfiguring and debugging EAT applications.

To address these problems, and to provide a more flexible
software environment for EAT applications we introduced the
Event Exchange (EVX) inter-module communication mecha-
nism. The Event Exchange allows components of the phone
to share information in a flexible and efficient manner. EVX
delivers events posted by a module on its “sending port” to
one or more interested modules on their EVX “receiving
ports.” Features of EVX include:

• Events are named independently of module function
names or addresses allowing easy reconfiguration of
EVX-based applications. A module can be replaced
without modifying other modules.

• Events can be delivered to one or more receivers with-
out the event producing module having to explicitly
identify the event’s receivers.

• Event data is delivered through a zero-copy reference
count-based mechanism that reduces the cost of deliv-
ering an event to multiple modules. This mechanism
can be used withIObufsto provide a way to exchange
bulk data at low cost.

• Events are queued at the sending port to provide flow
control. This prevents event producers, such as the
tone generator, from consuming all of EAT’s
resources.

EVX allows EAT-based applications to be separated into two
parts: a set of independent modules and a small compositional

application that ties modules together. To use EVX, a devel-
oper determines which modules are needed for the applica-
tion and how they interconnect. In the current version of
EVX, interconnections are determined when the composi-
tional application is written, but future versions will allow for
runtime configuration. When the compositional application
starts, it initializes EVX’s global state and creates sending
and receiving ports for each module. Each port has a charac-
ter string name and an associated port data structure. EVX
manages this association so that function names do not have
to be hardwired into modules. Each module commences by
initializing its ports before use, using the queue size of its
sending port to provide flow control and to prevent the mod-
ule from exhausting memory resources. At that point, event
producing modules can post events to their sending ports.
Posted events are delivered to receiving modules by EVX.
Receivers process an event and then issue an acknowledg-
ment. EVX allows threads to block waiting for an event and/
or arriving network data.

An important property of the EVX event distribution mecha-
nism is that events are processed at the priority of the receiv-
ing thread. This is motivated by the need to support
predictable processing for EAT application modules that deal
with media streams such as audio. Decoupling the priority of
the sender from the priority at which the event is processed

EVX Function Description

evx_init Initializes EVX’s global state.

evx_connect Establishes a connection between a sending port and a receiving
port. Ports are referenced by their string names. Data structures
are allocated when the port is referenced in a evx_connect call.
This includes setting the port’s queue length.

evx_initsp Initializes a sending port.

evx_initdp Initializes a receiving port.

evx_post Post an event to a sending port. This blocks if the port’s event
queue is full and the non-blocking flag is not set. Optionally,
evx_post will wait until the event is delivered, providing synchro-
nous semantics.

evx_receive Receive an event from a sending port. If there is no pending event
and the non-blocking flag is set, then evx_receive returns null.
When a receiver finishes processing an event it must call evx_ack
to acknowledge it.

evx_ack Release a receiver’s reference to a received event, allowing the
sender to recycle the event for future use. Optionally the sender
may request a callback when the event is freed.

evx_swalloc Allocate a new semaphore-wait object. These objects allow a
thread to block waiting for events on the associated port(s). An
object can be associated with a pipe, allowing a thread to use
select  to simultaneously wait for an event and I/O.

evx_swadd Add a receive port to a semaphore-wait object. A receive port is
associated with only one object at a time.

evx_swremove Remove a receive port from a semaphore-wait object.

evx_swwait Wait for an event to arrive on one of the receive ports added to the
specified semaphore wait object.

evx_swget Get a list of receive ports that have pending events from a sema-
phore-wait object.

evx_swpipefd Return the pipe file descriptor associated with the specified sema-
phore-wait object so that a client mayselect  on it. EVX writes
a byte to the pipe when a receive port with no queued events
receives one. EVX removes this byte from the pipe when an event
is received.

Table 1. EVX API



naturally lends itself to a multicast IPC model since the same
event can be processed at different priorities depending on
the receiving thread.

Table 1 shows the EVX API. The main functions used by
EVX modules are evx_post to post an event,
evx_receive to receive an event,evx_ack to acknowl-
edge a received event,evx_swwait to wait for an event to
arrive, andevx_swget to get a list of receive ports with
pending events. Note that the use of semaphore-wait objects
allows a decoupling between the specification of events of
interest from waiting for events to arrive, thus addressing the
known problem withselect in scaling to a large number
of descriptors [3].

Adapting the EAT application to use EVX has yielded
reduced complexity and easier reconfiguration and extensi-
bility. For example, it allows signaling-specific functions to
be encapsulated into a single module. To use a different sig-
naling protocol just requires adding a new signaling module
and adjusting module interconnections. In the future, com-
bining dynamic EVX reconfiguration and dynamically
loaded code will provide even more flexibility to EAT appli-
cation developers. Section 6 describes how EVX is used in
the EAT packet telephony application.

4.4   Networking

EAT supports both IP over ATM and native ATM network-
ing. EAT takes advantage of the flexibility and variety of ser-
vices offered by IP to implement control functions and uses
ATM to provide network QoS for voice traffic. As shown in
Figure 4, EAT networking is comprised of an ATM driver
that implements segmentation and reassembly, ATM layers,
and a TCP/IP stack.

EAT implements segmentation and reassembly with a com-
bination of hardware and software. The hardware performs

most of the work: cell header checking, DMA with CRC cal-
culation, and physical cell transmission and reception. The
software initiates DMA transfers for cell transmission and
reception. Each AAL5 packet is comprised of one or more
IObufs,allowing software to simply hand off a pointer to an
IObuf to initiate a DMA transfer. The software also does cell
pacing.

The ILMI, UNI, and LANE ATM layers are part of the Har-
ris and Jeffries (H&J) Soft ATM package. ILMI registers
EAT’s ATM address with the switch while UNI provides sig-
naling for connection setup and release. LANE allows an
Ethernet physical layer to be emulated on an ATM network.
When used with an Ethernet bridge, LANE allows EAT to
communicate over both ATM and Ethernet.

The VxWorks TCP/IP stack on EAT provides a complete set
of network facilities. This allows remote file access, remote
procedure calls, and access to EAT using telnet. The network
facilities also include WindRivers embedded HTTP Server.
We use the HTTP server to implement a GUI for advanced
services. Using a web browser, a user could place a call,
check messages, perform directory lookups, or change EAT
configurations.

5   EAT Packet Telephony Application

The EAT packet telephone application is a program that runs
on top of EAT’s hardware and software services described in
the previous two sections. Figure 6 shows major components
of the application and their interconnections using the EVX
event communication mechanism.

5.1   Mixer

A mixer module acceptsIObufs containing audio samples
posted as EVX events on its two receive ports and produces
an EVX event with anIObuf containing the summed digital

Figure 6. Modules in EAT Packet Telephony Application
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samples on its send port. The mixer may scale audio samples
from its ports prior to summing them. Scaling factors can be
set on a per port basis by the call controller.

The EAT telephone application contains two mixers. The
mixer in the audio output path mixes audio samples received
from a microphone with audio samples produced by a tone
generator. This allows tones resulting from key presses to be
heard by the remote endpoint. The mixer in the audio input
path sums audio samples received from the network with a
scaled version of the locally generated audio samples, and
feeds the result into the audio output device. The scaled ver-
sion of the locally generated audio is called theside-tone.
Side-tone is auditory feedback that enables the speaker to
hear her own voice. Absence of side-tone makes it difficult to
determine how loudly to speak, and gives the phone a dead
feeling.

5.2   Tone Generator

In the current telephone network, tones are used to provide
various forms of auditory feedback to the user and as a form
of in-band signaling. For example thebusy toneis used to
notify the caller that the far end is busy. A combination of
tones are used to represent keypad symbols. These tones are
often converted back to keypad symbols by a tone detector at
the far end in systems such as voicemail. Although a packet
network provides separate data and control channels, touch
tones are still useful when interworking with legacy systems.

Rather than increasing the cost of EAT by using a special pur-
pose hardware tone generator, EAT implements tone genera-
tion in software. We wrote a fixed-point integer-based tone
generation module which has low overhead. The EAT tone
generator produces tones in response to EVX events posted
on its receive port. Tone samples are placed intoIObufsand
are posted as events on its send port. The EVX flow control
mechanism allows the rate at which the tone generator pro-
ducesIObufs to adapt to the rate at which the D/A drains
audio samples.

When the phone application is started, the tone generator
module creates a 512-entry table consisting of equally spaced
samples of a sine wave which are scaled for full output. To
generate a tone of a particular frequencyf, the tone generator
treats the table as a circular array and samples it every

entries, wheres is the sampling frequency.

Clearly, this approach produces tones which are not exact. We
chose a table with 512 entries since it requires only a small
amount of memory (2048 bytes) and allows tones to be gener-
ated with small enough error to interoperate with legacy tele-
phone systems.

Multiple single frequency tones must be summed to create
most standard telephone tones. For example, the tone pro-
duced by pressing key 5 on a conventional telephone is equal
to the sum of a 770 Hz tone and a 1,336 Hz tone. The table is

also used by the tone generator to produce more complex
tones such as busy and ringing.

5.3   Compression

Packet telephony audio is typically compressed before being
sent out onto the network. There are several well known stan-
dards for audio compression. In EAT we currently use G.711
(µ-law), since it is simple to implement and has negligible
processing overhead — encoding and decoding only require a
table lookup and a few shift and logical operations.

Audio compression is implemented using two modules, an
audio compressor and an audio decompressor. The audio
compressor module acceptsIObufs containing 18-bit PCM
samples on its receive port. It converts the PCM samples to 8-
bit µ-law and stores them inIObufsthat are posted as events
on its sending port. The audio decompressor module performs
the reverse operation.

Although EAT currently implements G.711, the audio com-
pressor and decompressor modules could be replaced with
modules that implement other standards, such as G.728. We
are planning to modify the phone application to allow the call
controller to select the one of several coding standards negoti-
ated during call setup.

5.4   Silence detection

Besides compression, another way to reduce network band-
width is silence suppression — when a speaker is silent, voice
packets are not transmitted. Detecting silent periods is done
with a Voice Activity Detector (VAD). The challenge in
implementing a VAD is being able to determine what parts of
an audio signal are voice and what is background noise which
can be treated as silence. A VAD operates by computing the
power of each discrete sample and comparing it with a deci-
sion threshold. It adjusts the threshold in response to changes
in noise levels. For EAT we adopted the VAD described in
[10] primarily because it is less complex than existing
approaches and requires less numeric precision for computing
and updating operating parameters.

5.5   Playout Buffer

The playout buffer module receives decompressed audio sam-
ples from the network and performs delay jitter removal and
loss concealment. Audio packets can experience variable
transit delays due to queuing and congestion. The variance in
delay is called the jitter. The playout buffer module estimates
jitter and delays audio samples appropriately. This introduces
additional delay but avoids gaps during audio playback
caused by audio packets arriving late. Packet networks can
also occasionally lose packets. Although it is impossible to
reconstruct audio samples from a missing packet, it is possi-
ble to produce transitions that are less distracting than pure
silence. Loss concealment mechanisms are available to do
this.
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5.6   Putting The Audio Path Together

The audio input driver delivers audio samples from the D/A
in IObufs. TheIObufsare passed as EVX events to the mixer
in the audio output path. The mixer sums these audio samples
with samples from the tone generator. The output of the mixer
is then sent to the audio input path as side-tone and to the
VAD module. VAD passes non-silent audio samples to the
audio compression module for coding. Finally, once a fixed
number of coded samples are available, they are passed to the
network interface module where they are encapsulated in a
packet and transmitted on the network. We currently employ a
simple encapsulation similar to that described in [5] but in the
future other encapsulations, such as RTP [21], may be used.

The network interface module receives audio packets from
the network, decapsulates them, determines if any packets
were lost, and passes the audio data inIObufsas EVX events
to the audio decompressor module. There the audio samples
are uncompressed and passed to the playout buffer module.
The playout buffer module determines the playout time for
the audio samples. If packets were lost, the playout buffer
module performs loss concealment. When it is time for data
in the playout buffer to be processed, anIObuf is sent to the
mixer in the audio input path. This mixer combines audio
received from the network with a scaled version of the side-
tone and passes it to the audio output driver. The audio output
driver plays the audio on the selected output device (i.e.,
handset, case speaker, or external speaker).

5.7   Call Controller

The call controller sets up and manages telephone conversa-
tions on the packet telephone. When a user initiates a new
call, an EVX event is sent by a user interface component (e.g.
the hook monitor) to the call controller. In response to this,
the call controller prompts the user for the distinguished name
(DN) of the party to be called. Since the DN can be input
using any available user interface such as a keypad or a
remote web browser, we use EVX events to prompt the user
and to pass the DN to the call controller. Thus, different user
interfaces can be accommodated.

Once the call controller has obtained the DN, it initiates a
directory lookup to map the DN to a set of call appearances.
The call controller passes information from a call appearance
as an EVX event to a signaling module which uses the event
information to establish a call. Unlike most traditional
phones, a packet phone may have multiple simultaneous calls
in progress. It is the function of the call controller to pass user
interface events it receives to the currently active call context
(i.e., the one in focus).

5.8   Signaling

At present, our signaling module implements the TOPS appli-
cation layer signaling (ALS) protocol [2]. For each call, an
ALS module maintains a call state machine and makes the
appropriate transitions according to network messages and

user actions that it receives on EVX ports. It uses EVX events
to post call states that are of relevance to other components.
For example when ALS gets a busy indication from a called
party it posts this state as an event on its send port. This
causes the tone generator to generate a busy tone if that call is
in focus. Using a common EVX event format for posting sig-
naling events allows ALS to be replaced by different signal-
ing protocols without having to modify other modules in the
application. It also allows a single packet telephone applica-
tion to support multiple signaling protocols on a per call
basis.

ALS was designed to allow telephony applications and serv-
ers to interact for the purposes of call establishment, manage-
ment, and termination. A principle in its design was that the
common case of point-to-point voice telephony must be sup-
ported simply and efficiently, while more complicated scenar-
ios, such as multimedia and conference calls, can be handled
through protocol enhancements. Salient features of the proto-
col are:

• A lightweight protocol with a small set of messages,

• Single protocol for all interactions (i.e., between
applications, PSTN gateways, and conferencing serv-
ers),

• Allows negotiation of call parameters such as number
of media streams and terminal capabilities,

• Allows interaction with network protocols to ensure
that sufficient resources are available for a call,

• Transport-layer independent.

ALS uses a two-phase message exchange. The first exchange
involves inviting the remote terminal to enter into a call and
includes call parameters and terminal capabilities. If the
remote terminal does not support the requested capabilities,
or the remote terminal is busy, a negative acknowledgment is
returned. A positive acknowledgment causes media streams
to be set-up and network resources to be allocated. If
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resources are available, a second message exchange is used to
alert the called party of an incoming call. Figure 7 shows
these message exchanges. Figure 8 shows a single call proto-
col state machine at the calling party. For simplicity, some
states, unexpected conditions, and time-outs are not shown.

6   Related Work

Numerous techniques exist to reduce copying in the network
subsystem. The closest scheme toIObufs is I/O-Lite [17].
Both systems use a common data representation across sub-
systems but I/O-Lite requires that buffers be immutable, since
it uses this property to enforce protection when data is shared
between domains.IObufs avoids this problem since all
threads are in the same domain.IObufscan be located in any
memory region. In contrast, I/O-Lite uses the Fbuf [4] mecha-
nism for data movement and its buffers are restricted to be in
a specific region. This can result in data copying.

EAT’s event exchange (EVX) provides a software bus-style
mechanism that integrates event delivery withIObuf data
communication. EVX is based on the publisher/subscriber
model [14,18] and naturally supports one-to-many communi-
cation. By defining module communication in terms of send
and receive ports, EVX obtains the flexibility of distributed
object systems, and can support similar approaches for decou-
pled event delivery [7]. EVX provides flow control similar to
Unix SVR4 STREAMS [19,23]. Scout [12,13] is an example
of a operating system that targets network devices. It uses the
notion of apath that connects modules and allows resource
accounting and quality of service, but does not address inte-
grated event/data delivery.

EVX’s integration of networking and event notification
through the use of a pipe is similar to the mechanism used in

[20] to hide the difference between semaphores and socket-
based I/O. EVX’s separation of event interest selection and
waiting for event notification was based on observations in [3]
on the expense of usingselect  to wait for I/O.

Our work draws on work conducted during the 1980s on
projects such as Etherphone [22] and ISLAND [1], which
explored many of the basic issues related to packet voice
transmission using voice terminals in an office LAN environ-
ment. Since we began this project, several companies have
released IP telephone products targeted at the LAN-based
PBX market. For example, Selsius Systems Inc. provide an
Ethernet-based phone and Symbol Technologies Inc. offer a
wireless LAN phone. These phones are designed to use a pre-
determined protocol (H.323) and fixed coders, and rely for
the most part on a LAN-based PBX server to implement tele-
phony services. In comparison, EAT was designed specifi-
cally to be extensible and can accommodate new protocols
and services easily.

7   Future Work

EAT is now an integral part of the TOPS packet telephony
environment at AT&T Labs. In addition to augmenting the
browser-based control interface, we plan to use EAT to
explore several other issues related to telephony appliances.
An interesting feature of EAT is its ability to implement tele-
phony services such as call waiting at the telephone device
itself, rather than in network switches, as is the case for tradi-
tional telephony. This allows new services to be more easily
tested, implemented, and deployed. In designing EAT we pro-
vided mechanisms that enable extensibility, and we plan to
explore how new services can be automatically discovered
and dynamically installed in a phone. For example, some
form of service scripting language may be appropriate. EAT
programmability may also be used to dynamically load voice
coders based on call capability negotiation and to provide per-
sonalized behavior based on the preferences of a registered
user. How to provide these features is a subject of future
work.

Telephony appliances are required to interact with various
network servers, for example EAT currently uses the TOPS
directory service and a gateway. We are interested in explor-
ing more generally how EAT might use other services to sup-
port conferencing, speech processing, and user/terminal/call
mobility. Finally, we are interested in using EAT to enable
new services, including those involving access to high-quality
music and the use of location information to influence call
handling.

8   Conclusion

In this paper we presented the design and implementation of
EAT, a packet telephony appliance. Our work makes three
contributions: the detailed system architecture of a packet
telephony appliance, a unified buffering mechanism for space
and time efficiency, and a related event exchange mechanisms

Figure 8. Calling Party State Machine
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that enables extensibility. Our paper describes the overall
packet telephony system architecture. The EAT packet tele-
phony appliance that we built is based on the novel Euphony
network processor that integrates networking and DSP func-
tions to provide a low cost and efficient solution for building
networked appliances. EAT runs a real-time operating system
that allows predictable operation with support for guaranteed
processing of voice data. The system services provide for
buffering, interprocess communication, and networking on
which the phone application is built. Finally, we presented the
architecture of the phone application itself and the intercon-
nection between its components.

In addition to describing the hardware and software architec-
ture of EAT, our paper introduced two general mechanisms
which grew out of our need to conserve memory and a highly
efficient but extensible software system. The first of these is
IObufs, which are used by all software modules that require
data to be exchanged. The second is the Event Exchange. The
combination of these two mechanisms provides an efficient
scheme for integrated event/data delivery and allows EAT to
easily evolve to accommodate new protocols and services.
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