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Abstract

As networking technologies evolve, the ability to sup-
port the low-latency transmission of lossless video for ap-
plications such as scientific visualization or medical imag-
ing will continue to become more important. With all the
research focused on lossless and near-lossless image com-
pression, little gains in compression performance have been
achieved over the last decade. In this paper, we introduce
a system that provides comparable compression ratios to
current lossless compression techniques but makes it more
amenable to network transmission and playback. Working
with computer graphics researchers, this system provides
the appropriate tradeoff of constraints and performance for
their needs.

1 Introduction

As networking and computing technologies continue to
advance, the ability to support advanced video-based ap-
plication that deliver high-quality video are now possible.
With the large amount of research focused on the efficient
coding, storage, retrieval, and transmission of digital video,
we are currently able to support DCT-based video streaming
across networks fairly well. We are, however, still unable to
support applications that require more stringent bounds on
the quality of the video such as medical imaging, advanced
scientific visualization, and computer graphics.

Unlike lossy DCT-based video compression algorithms
that transform the data into the frequency domain so that
it is more compressible, lossless image compression tech-
niques attempt to predict the value of each pixel based on
some of the surrounding pixels and then entropy encoding
the difference to the predicted value. More importantly, it
has been shown that there is little advantage to temporal
compression of these sequences [7]. Because of this, the
compression ratios achieved by lossless image compression
standards are much less than that of DCT-based algorithms

(typically 2:1 for lossless and 25:1 for DCT-based). Thus,
the coding and transmission of lossless video can be ex-
tremely resource hungry.

The efficient support for lossless video-based applica-
tions is extremely difficult because they require low-latency
delivery of video while requiring much larger bandwidth,
generally considered two mutually exclusive goals. In our
discussion with these researchers and scientists, two main
themes manifested themselves. First, they need the ability
to have low-latency visualizations so that they can under-
stand what is happening in the simulation data at a higher-
layer (that is, general understanding). Second, they need
the ability to query the data to be able to extract meaningful
information from the data accurately. Note that the image
data is not necessarily confined to 24-bits per pixel.

In this paper, we introduce a lossless video compression
technique that provides comparable performance to current
lossless image compression techniques but, more impor-
tantly, makes the data more amenable to network trans-
mission. The main purpose of this approach is to provide
(i) a smaller-sized MPEG video sequence that supports the
low-latency requirements, allowing the researchers to un-
derstand the data at a higher-level and (ii) a lossless or loss-
bounded differential file that allows the original image data
to be reconstructed, if necessary 1. Our results will show
that we can achieve lossless and loss-bounded image com-
pression that has comparable performance to lossless video
compression algorithms but also supports low-latency de-
livery (through the smaller MPEG file). The experiments
use two video sequences, one from medical imaging and
the other from a scientific visualization program.

The rest of the paper is organized as follows. In section
2, we describe some of the background and related work
necessary for the understanding of this paper. In section 3,
we describe our proposed approach. In section 4, we pro-
vide experimental results for both lossless and loss-bounded
compression using the previously mentioned image data. In

1Clearly this is achievable only if the MPEG decompression algorithms
are the same. We will elaborate more on this later in the paper
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section 5, we conclude and give future research directions.
Contributions of this work: The main contribution of this

work is the design and analysis of a lossless video system
that provides scientists with high-level, low-latency under-
standing of scientific computations while preserving the im-
portant lossless characteristics that they desire. In particu-
lar, our work compares and contrasts several lossless video
compression algorithms (including LOCO which serves as
the basis for JPEG2000) using lossless video data that is
used by scientists and graphics researchers at Ohio State.
Our goal is not to create a better lossless video compression
algorithm, but making lossless video more available and us-
able for scientists.

2 Background and Related Work

We break the background and related work section into
two main parts: lossless and loss-bounded image compres-
sion techniques, and video compression algorithms.

2.1 Lossless/Loss-bounded Image Compression

There has been considerable research in the area of
lossless image compression in the last three decades.
While many standard compression techniques such as Huff-
man, Arithmetic, Liv-Zempel(LZ), and Liv-Zempel-Welch
(LZW) can be employed, lossless image compression tech-
niques attempt to take advantage of the spatial properties
of the image to aid in compression. A number of image-
specific lossless compression algorithms and systems have
been introduced recently. These algorithms include the
JPEG lossless coder, SUNSET, universal context modeling,
FELICS [4], CALIC [10], LOCO-I, SICLIC and many oth-
ers. Despite all the effort, there has not been much of an im-
provement in the compression ratio which typically varies
from 1.5:1 to 3:1, depending on the image. Even with such
low compression ratios, the gains can have substantial im-
pact, given the size of the original image.

Lossless image compression algorithms typically com-
prise of two distinct and independent components: model-
ing and coding. The modeling part can be formulated as an
inductive inference problem in which an image is observed
pixel by pixel in some defined order (usually in raster-scan).
The goal then is to infer the next sample value from a se-
lected region of pixels that are close to it.

For this paper, we focus on the use of the LOCO-I image
compression algorithm since it has been standardized as the
algorithm for JPEG 2000 [6]. LOCO-I provides for both
lossless and near-lossless compression of continuous-tone
images. Since LOCO-I has been designed for still-image
data, it does not take into account spectral redundancy in
the case of multi-spectral images and temporal redundancy
in the case of video sequences. It is based on a simple fixed

context model - combining simplicity with the compression
potential of context models. Based on the context for the
current pixel the current pixel value is predicted using a
primitive edge detector (because of complexity constraints).
The context for conditioning the current prediction resid-
ual is built out of the differences between the pixel values
in the context. These differences represent the local gra-
dient thus capturing the local activity. The model is tuned
for efficient performance in conjunction with an extended
family of Golomb-type codes, which are adaptively chosen
and and embedded alphabet extension for coding of low-
entropy image regions. Interband CALIC [9] is one step to
take into account the above two resulting in modest gains
in compression. Another approach is SICLIC [1] which is
an inter-color coding algorithm similar to the LOCO-I algo-
rithm. It does both inter and intra color encoding taking into
account the spectral redundancy component in the image.

2.2 Video Compression Algorithms

For brevity, we assume that the readers are somewhat
familiar with the details of the MPEG video compression
standard [3] and simply highlight the relevant parts for this
paper. First, the data is lossy transformed from the RGB
color space to the YUV color space with the U and V
channels being subsampled at a 2:1 ratio in both spatial
dimensions. Second, MPEG uses a discrete cosine trans-
form (DCT) to separate the data into its frequency com-
ponents, making it easier to run-length compress. After
the DCT is performed, the resultant coefficients are quan-
tized. Larger quantization values mean that more of the
coefficients will have the same value, increasing the com-
pression ratio. Smaller quantization values mean that less
of the coefficients will have the same value, decreasing the
compression ratio. As a result, the DCT and quantization
steps will also introduce error in the compression of video
data. Finally, we note that MPEG has varying frame types
to take advantage of inter-frame redundancy by using pre-
dictive coding coupled with motion compensation.

The MPEG-2 video standard is very similar in flavor to
the original MPEG-1 video compression standard but pro-
vides for higher quality video such as HDTV video. The ac-
tual differences between these algorithms is limited to fairly
minor items such as providing for interlaced video with
fields and different zig-zag ordering of coefficients when
interlacing is used.

3 Proposed Method

To aid scientists in the visualization and understanding
of scientific data, we propose a multi-layer lossless video
compression algorithm that supports low-latency viewing
of time-varying data and supports lossless query retrieval
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Figure 1. Compression and Decompression using proposed method

of the original image data. The basis of our approach is to
use MPEG to compress the video stream to get an in the
ball park video that provides the scientist with a high-level,
real-time view of the visualization. After the scientist un-
derstands the high-level view of the visualization and wants
to look at actual values of pixels (which may represent phys-
ical phenomena such as pressure) we augment the data with
a lossless differential that provides the original data back to
the user (i.e. is lossless). For clarity, we refer to the loss-
less differential as an enhancement and use differential to
mean that a frame is differentially coded with respect to a
previous frame.

3.1 Reasons For/Against Using MPEG

In the general scenario where millions of people may
want access to the video, this type of multi-layering may
not be possible. The main reason behind this is that differ-
ent MPEG implementations may result in different image
data, mostly due to shortcuts taken to optimize for speed.
Some of these differences include:

� Different inverse-DCT algorithms being implemented
in the decoder. Depending on the conformance
level, the decoder may implement a two-pass one-
dimensional DCT (column/row), or may implement a
one-pass two-dimensional DCT [8, 2].

� Tweaks to optimize performance at the cost of accu-
racy. In order to maximize the decoding rate, a decoder
may not perform all the calculations. One such exam-
ple is using the Berkeley MPEG-1 decoder [5] with
half-pixel motion estimation searches. If the motion
vectors in the B-frames are both half pixel in size, the
Berkeley decoder will not completely average all four
pixels that make up the motion compensated pixel.
Their results show that there is very little visual dif-
ference.

However, all is not lost. The researchers that we are work-
ing with are perfectly willing to use the same decoder on all

machines. The only caveat being that the machines may not
necessarily be the same. We have found that under these
assumptions, our approach results in lossless delivery of the
video. We will discuss this point further in the experimen-
tation section.

3.2 Lossless Video Overview

The encoding phase of our proposed approach consists
of four main steps: (a) MPEG video compression, (b)
MPEG video reconstruction, (c) differential image calcula-
tion, and (d) differential entropy encoding. In the first step,
we encode the video frames using quantization levels of 1
for the I, P, and B frames. Using a low quantization level,
ensures that the artifacts introduced during the DCT trans-
formation remain small. This is particularly important when
dealing with computer generated data that contain many
high frequency components. In the second step, we decode
the video frame to determine the resultant video frame. This
decoded frame is then used to create the enhancement image
from the original frame in the third step. In the final step, we
lossless compress the enhancement video frame. As we will
show in the experimental section, Huffman compression or
LZ and not LOCO-I will be the most effective in compress-
ing the enhancement because it provides similar levels of
compression and provides much faster decoding speed. A
block-level diagram of the compression stages is shown in
Figure 1.

Viewing the compressed data occurs in several phases as
well. Initially, when the scientist is trying to understand the
simulation, the highly compressed MPEG-file is streamed
to the user. If the user find an interesting phenomena that
he/she wants to look at in greater detail, the lossless com-
pressed enhancement is transmitted to the user. The en-
hancement is then decoded and added back to the MPEG
video frame to create the original video data without loss.
In many cases, it is expected that the user will not need to
see the lossless compressed video frame, resulting in a large
savings of network bandwidth.



4 Experimentation

In this section, we compare and contrast the performance
of our algorithm with other algorithms such as LOCO-I
for lossless video compression and transmission. We begin
with a description of the experimental setup including the
data used, the different architectures used, and the different
decoders that were used. We then describe the comparison
algorithms that were implemented. Finally, we present our
experimental data.

4.1 Experimental Setup

In this subsection, we briefly highlight the software and
setup that we used for the experiments.

4.1.1 Input data

For our experiments, we used two different data sets. The
first data set is a scientific visualization simulation that
shows the movement of clouds and winds around the earth.
The original data set consists of frames that are 1920x1035
pixels in size. Due to the limitations of the MPEG-1 video
coder, we extracted a 352x240 pixel subregion within the
data. In addition, we extracted 16 frames from the data set
to use in our experiments. We refer to this data set as the
wind data set. The second data set is a visualization of a
rotating head. We had 40 images that show the 360 degree
camera rotation around the head. We refer to this data set as
the head data set. Sample images from these data sets are
shown in Figure 2.

4.1.2 Architectures used

For our experiments, we used three different architectures.
These included an SGI Octane, a Linux-based PC, and a
Sun UltraSparc running Solaris. The purpose of the various
machines is to test the lossless properties across different
architectures and to verify that they result in the same im-
age.

4.1.3 MPEG encoders and decoders used

We used two publicly available MPEG encoders and de-
coders for our experiments. The first set consists of
the Berkeley MPEG tools mpeg encode (version 1.5) and
mpeg play (version 2.3)2. The second set of software
consists of the MPEG Software Simulation Group tools
mpeg2encode and mpeg2decode3.

2These are available via the web at www.bmrc.berkeley.edu
3These are available via the web at www.mpeg.org

4.1.4 Lossless compression algorithms used

For our experiments, we coded several basic compression
algorithms and were able to gather some publicly available
image coding algorithms. The code for the comparison in-
cludes:

LOCO-I: a publicly available LOCO-I encoder and de-
coder from the Univ. of British Columbia

MPEG + LOCO-I enhancement: implements the MPEG
video plus enhancement frames with respect to the
MPEG stream using LOCO-I compression.

MPEG + Huffman enhancement: implements the
MPEG video plus enhancements that are lossless
compressed using Huffman compression.

MPEG + LZ enhancement: implements the MPEG video
plus enhancements that are lossless compressed using
compress which is an adaptive Lempel-Ziv compres-
sion.

LOCO-I Differential: uses modified LOCO-I encoder to
do differential coding of video frames (from a previous
frame). The purpose of this algorithm is to show the
effect of temporal encoding.

4.2 Experiments

For our research, we are interested in three main ques-
tions:

� What overall compression ratio is achievable with the
various algorithms?

� How do they compare in terms of compression and de-
compression time?

� What happens when different architectures and de-
coders are used?

In the rest of this section, we will describe the experiments
that we ran and the resulting data that was obtained.

4.2.1 Compression Performance

To test the compression performance of the algorithms, we
ran the sample data sets through the various algorithms and
plotted the resulting compression ratios (on a frame-by-
frame basis). The results for lossless compression, loss-
bounded compression with bound 2 and loss-bounded com-
pression with bound 4 are given in Figure 3, Figure 4, and
Figure 5, respectively. As shown by the figures, the com-
pression ratio achieved by the various algorithms is very
similar. The wind figures show that there is some advantage
to doing differential compression using LOCO-I. However,



Figure 2. Sample head and wind images
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Figure 3. Compression ratios of frames for head and wind data for lossless compression

this advantage becomes a disadvantage when applied to the
head data set. The reason for this is that the wind data set
has a background that does not change and the actual wind
vectors slowly change. As a result, the data between frames
is very similar. The main disadvantage is that for sequences
that have larger motion (as in head), performing differential
lossless compression is terrible. The main reason is that the
differential is “fixing” data from the previous frame, result-
ing in a higher entropy. This experiment verifies the pre-
vious finds why the application of differential coding for
lossless video is difficult [7].

In these figures, we also see that using MPEG and Huff-
man compression on the enhancements (between the MPEG
and actual frame data) results in compression performance
on par with using LOCO-I only or using MPEG and LOCO-
I compressed enhancements. Finally, we note that with
looser error bounds on the compression that the ability to
compress the data becomes easier.

In Table 1, we have graphed the overall compression ra-

tio for the various algorithms and loss-bounds. Compres-
sion ratio is computed by dividing the size of the original
images by the size of compressed images. For algorithms
which also have an MPEG part the size of compressed im-
ages is sum of size of MPEG and size of compressed differ-
ences. We implement lossbounded compression using huff-
man by mapping many nodes to one node without violat-
ing lossbound and then we compress the differences using
this smaller tree. We don’t have lossbounded compression
results for LZ because LZ is lossless compression and we
don’t have a practical lossbounded LZ compression.

4.2.2 Algorithm Speed

So far, we have shown that the proposed approach results in
similar compression to applying LOCO-I to each frame in-
dividually. In this section, we compare the performance of
our approach to LOCO-I. In Table 2, we show the time re-
quired to compress and decompress the two data sets. Here,
we see that MPEG compression is the most expensive op-
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Figure 4. Compression ratios of frames for head and wind data for loss-bounded compression with
bound 2
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Figure 5. Compression ratios of frames for head and wind data for loss-bounded compression with
bound 4

Table 1. Compression Ratio
MPEG+ MPEG+ MPEG+ LOCO-I

Data Compression LOCO-I HUFFMAN LZ LOCO-I DIFF
lossless 2.03 1.74 1.72 2.57 2.20

Head bound-2 3.50 3.04 N/A 5.27 4.01
bound-4 4.07 3.63 N/A 6.77 4.81
lossless 1.53 1.40 1.25 1.91 2.82

Wind bound-2 2.59 2.32 N/A 3.66 6.09
bound-4 3.19 3.04 N/A 4.82 8.69



Table 2. Encoding/Decoding Performance
Encoding Decoding

Time (Sec) Time (Sec)
Algorithm Head Wind Head Wind

intra-frame LOCO-I 2.89 3.63 2.71 2.89
MPEG differences 3.03 3.74 2.84 3.03
MPEG 14.30 19.75 0.42 0.43
Huffman 1.92 2.20 0.76 0.78
LZ 0.79 0.98 0.42 0.51
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Figure 6. Differences when decoded using mpeg play and mpeg2decode

eration, due mostly to the expensive motion compensation
step. We also see, however that the Compress program on
Unix has the best speed (probably due to heavy optimiza-
tion), one-fourth to one-sixth of LOCO-I but typically has
lower compression ratio. MPEG and Huffman compression
result in a total decompression time that is one-half to one-
third that of LOCO-I. As a result, we will be able to de-
liver the same quality video with less overhead at the client.
The reason LOCO-I is so slow is that performs a number
of operations per pixel in both the encoding and decoding
phases. These steps in encoding include: predicting the
value based on neighboring pixels, calculating a prediction
based on gradient information between neighboring pixels,
and adaptively coding the value using Golomb codes. The
decoding must perform these steps in the reverse order.

4.2.3 Effect of Architecture and Different MPEG Play-
ers

In order to study the effect of different architectures, we first
compared the displayed images of mpeg play on Linux, So-
laris, and SGI operating systems and observed that they are
the same, as expected. This was accomplished by writing
out all frames in raw R, G, B and comparing them pixel
by pixel. While the three architectures returned the same

results, we are investigating other operating system and ar-
chitecture configurations. As a result, we believe that our
algorithm can be used in a heterogeneous environment with
multiple operating systems and architectures.

With regard to different MPEG players, we observed that
for the same MPEG file, the displayed images of mpeg play
and mpeg2decode are not the same since they implement the
DCT transformation using different algorithms. Because
our enhancement images that create the lossless video de-
pend on the decoded images, it is important that same de-
coder is used in compression and decompression of loss-
less video. The differences when the image is decoded us-
ing mpeg play without the enhancements and mpeg2decode
without enhancements are given in figure 6. As shown in the
figure, the MPEG-2 player when configured to use all oper-
ations, results in a slightly different image. We are still try-
ing to determine the exact cause of these differences. From
our observations, the MPEG-2 player resulted in a slightly
duller image.

5 Acknowledgements

The authors wish to thank the reviewers for their com-
ments on the initial draft. This work was supported in part
by grants from the National Science Foundation, the De-



partment of Energy, and Ameritech.

6 Conclusion

In this paper we proposed an MPEG based lossless video
compression algorithm with support for bandwidth-efficient
transmission. The goal of this work was to transform
the lossless video data into a format that makes it more
amenable to network transmission while achieving similar
compression ratios to the lossless image standards. By us-
ing MPEG video, we can ensure that low-latency playback
is possible in order to understand the simulation at a high-
level. By using a Huffman compressed or LZ compressed
enhancement frame that allows the original image to be
losslessly reconstructed, we can provide better decompres-
sion speeds, allowing for a more interactive viewing experi-
ence for the scientists. Future work will continue to exam-
ine the effect of different libraries, operating systems, and
architectures on the lossless properties.
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