

Ricardo Baeza-Yates VP, Yahoo! Research

SEMEDIA

- Search Environments for Media
 - Focused on image & video search

Agenda

- Motivation: Search
- The Power of Data
- Examples
 - -Exploiting Flickr Tags
 - -Using Visual Annotations
 - -Faceted Image Retrieval
- · Impacts not only relevance but also the UI
- Concluding Remarks

Motivation

- Web search is no longer about document retrieval
 - -Means for web-mediated goals
- New breed of search experiences
 - Demands search ecosystem combining content with intent
 - Exploting the Wisdom of Crowds behind the Web 2.0

Trends

- User Generated Content
 - Massive (quality vs. quantity)
 - Social Networks
 - Real time (people + sensors)
- Impact
 - Fragmentation of ownership
 - Fragmentation of access (longer tail)
 - Fragmentation of right to access
- Viability
 - Business model based in advertising

Search is Evolving

- Already, more than a list of docs
- Moving towards identifying a user's task
- Enabling means for task completion
- New experiences based on the Web 2.0
- Challenges: on-line, scalability

More complete information

Net

- We move from a web of pages to a web of objects
- Objects are people, places, businesses, restaurants ...
- Objects have attributes
 Missing, noisy, etc.
- Intents are satisfied by presenting objects and attributes
- Attributes define faceted search

12

How do we get structured objects/attributes?

- Web Content
 - Metadata/Taxonomies/Folksonomies
 - Classification/ML/Extraction/Semantic Web
- Web 2.0 & Web Usage
 - Explicit & Implicit relations
- Building out an open ecosystem
 - -Publishers have incentives to contribute

13

The SearchMonkey Ecosystem

Opening search - what does it mean?

Content and Metadata trends

Content type	Amount of content produced per day
Published content	3-4 GB
Professional web content	$\sim 2~{ m GB}$
User generated content	8-10 GB
Private text content	$\sim 3 ~ { m TB} ~(300 { m x more})$
Upper bound on typed content	${\sim}700~{ m TB}~({\sim}200{ m x~more})$

Metadata type	Amount of metadata produced per day
Anchortext	100 MB
Tags	40 MB
Pageviews	180 GB
Reviews	Around 10 MB

[Ramakrishnan and Tomkins 2007]

The Wisdom of Crowds

 James Surowiecki, a *New Yorker* columnist, published this book in 2004

– "Under the right circumstances, groups are remarkably intelligent"

 Importance of diversity, independence and decentralization
 Aggregating data

> "large groups of people are smarter than an elite few, no matter how brilliant—they are better at solving problems, fostering innovation, coming to wise decisions, even predicting the future".

The Wisdom of Crowds

-Crucial for Search Ranking

-Text: Web Writers & Editors

- not only for the Web!
- -Links: Web Publishers
- -Tags: Web Taggers
- -Queries: All Web Users!
 - Queries and actions (or no action!)

Tag Mining - Collective Knowledge

- Many users annotate photos of "La Sagrada Familia":
 - Sagrada Familia, Barcelona
 - Sagrada Familia, Gaudi, architecture, church
 - church, Sagrada Familia
 - Sagrada Familia, Barcelona, Spain
- Derived collective knowledge:
 - Barcelona, Gaudi, church, architecture

Improving Image Search

TagExplorer

- http://sandbox.yahoo.com/TagExplorer
- A prototype for browsing Flickr photos
- Provides query refinement for ...
 - ... drilling in to more specific topics
 - ... zooming out to more general topics
 - -... side-track to a related topic
- Organizes refinement terms ...
 - ... in a tag-cloud
 - ... groups together semantically similar terms

Dynamic Tag Clouds

- For the user query a list of related terms is presented and can be used to refine the query (visualized as a tag-cloud)
- The related terms are derived using tag co-occurrence among 250 million Flickr photos
- The related terms are calculated using a probabilistic framework using different conditional probabilities to get a mixture of general and specific terms

Semantic Breakup of Tag Clouds

- Tag-cloud is organized by grouping together tags that have similar meaning
- The grouping is a two levels
 - Where? What? When?
 - Locations, subjects, names, activities, time
- The classification of tags is derived using a machine learned classification of Wikipedia pages

Overell, Sigurbjornsson and van Zwol, WSDM 2009

Tag Mining - Classification

Assign tag semantics using WordNet broad categories

Tag Mining – Classification

- Extend this mapping using patterns found in Wikipedia
 - Upper bound for coverage: 78.6% of the tag volume
 - Based on SVM approach
 - Features: Wikipedia templates and categories
 - Training data: Wikipedia entries found in WordNet
 - Extended coverage: 68% of the tag volume
 - Mapping from Wikipedia pages to tags
 - · Reduces ambiguity in the classification

TagExplorer - Example

Could suggest tags: nice but

London Eye

London Eye and Golden Jubilee Bridge seen from Westminister Bridge.

Tag list

london eye, thames,

Suggested tags

🗹 london	
🗹 england	
⊻uk	
🗹 river	
eye	
south bank	
🗌 big ben	
🗌 night	
⊠ bridge	
2006	
Update annotation	

- 33 -

Faceted Image Search

Diversification of image search results

Topical and Visual diversification

ACM MIR 2008, Vancouver, Canada WWW2009, Madrid, Spain

Dimensions of Diversity

• Other dimensions: spatial, temporal, social

Topical Diversity

Propose: diversification as part of the retrieval model

- Query Likelihood (full index, tags only)
- Relevance model (full index, tags only, dual index)
- Topics
 - 95 topics extracted from Flickr search logs
 - 25 ambiguous topics
- Collection:
 - 6M public photos from Flickr (Title, description and tags)

Topical Diversity

- Blind pooling, 51.000 images judged for relevance.
- Two step assessment:
 - Binary relevance judgement
 - Sense classification
- Measured inter-assessor agreement for 20% of topics
 - >85% for all topics
 - most topics >90%

Unambiguous topics

Model	P@1	P@5	P@10	P@15	P@20	P@25	P@50
Query Likelihood	0.747	0.733	0.733	0.719	0.709	0.701	0.667
Query Likelihood (Tags Only)	0.779	0.749	0.720	0.712	0.703	0.700	0.673
Relevance Model	0.758	0.743	0.720	0.708	0.706	0.699	0.677
Relevance Model (Tags Only)	0.779	0.726	0.717	0.719	0.714	0.710	0.683
Relevance Model (Dual Index)	0.768	0.754	0.739	0.726	0.719	0.716	0.680

Ambiguous topics

Model	P@1	P@5	P@10	P@15	P@20	P@25	P@50
Query Likelihood	0.680	0.760	0.720	0.725	0.734	0.744	0.734
Query Likelihood (Tags Only)	0.800	0.736	0.732	0.720	0.736	0.736	0.734
Relevance Model	0.720	0.760	0.768	0.784	0.788	0.792	0.778
Relevance Model (Tags Only)	0.840	0.728	0.744	0.741	0.756	0.752	0.735
Relevance Model (Dual Index)	0.720	0.776	0.768	0.755	0.754	0.760	0.763

39 -

- 40 -

Topical Diversity – Distribution of word senses

Visual Diversity

- Visual diversity is needed when topical ambiguity is low
- Depends of visual characteristics of images returned
 - Dynamic feature weighting
 - · Capture visual characteristics of the list of images
 - Light-weight clustering methods
 - (Top-K) Folding, Reciprocal Election

Visual Diversity – Dynamic feature weighting

Visual Diversity – Dynamic feature weighting

• Distance between *a* and *b*:

Visual Diversity – clustering of results

Folding selection (features: color histogram, edge corellogram)

Top-k folding selection (features: color histogram, edge corellogram)

Boosting Image Retrieval through Aggregating Search Results based on Visual Annotations

ACM Multimedia 2008, Vancouver, Canada

Use Visual Annotations

Flickr allows another kind of annotations (notes)

- Associate text with visual area
- Highly relevant to content
 - → Visual Annotation
- Valuable to learn different the visual representations of an object

Olivares, Ciaramita, van Zwol. ACM Multimedia 2008

Main objective:

Improve retrieval performance by combining visual annotations, with textual and visual information

Use visual annotations (text & image) and rank aggregation to improve retrieval

Content-based Image Retrieval

- 1. Extract visual features and describe them
 - Processed 12,000 images.
 - Computed Harris and Hessian features
 - Described using SIFT
- Build visual vocabulary
 - Clustered SIFT descriptors to create vocabulary of 10,000 words
 - Implemented an approximate K-means algorithm
 - 3 resulting vocabularies: based on Harris, Hessian and a combination of those 2 features.

Content-based Image Retrieval

- Image represented as a set of visual words
 - Represented in the vector space model
 - Similarity measured by cosine similarity
- Spatial distribution more important in images than in text

Aggregating visual annotations

Borda count [Aslam & Montague]

Ranking Images on the Web with Clicks, Tags and Visual Features

Bridging the semantic gap in image retrieval with user-clicks on images...

Ranking Images with Click Data

Learning from Clicks

- User clicks give relative preference
- · Clicks at rank 1 ignored
- Train and evaluate in "blocks"

Classification

- Two classes: clicked and nonclicked
 - Assume they are separable by a hyperplane
- · Train on patterns independently
- Binary perceptron
 - Averaging: Average weight vector of all models posited during training
 - Uneven margin:
 - · Clicked class outnumbered by nonclicked class
- Perceptron produces a score
 - Use the score to rank images in each block

Features: Visual + Textual

- · Visual features described earlier
- Tf.idf term weights (query, image) pairs
 - Tags
 - Title
 - Description
 - All as one "document"
- · Cosine similarity
- Maximum tf.idf score
- Average tf.idf score
- Bias feature is 1.0 for every example
- Scores normalized by column and by row

Results

	Accuracy	MRR
Retrieval Baseline	0.4198	0.6186
Learned Baseline	0.4073	0.6104
Textual Features	0.5484	0.7034*
Visual Features	0.5805	0.7233*
Text + Visual	0.7512	0.8365*

Open Issues

- Data Volume versus Better Algorithms
- Explicit versus implicit social networks
 - Any fundamental similarities?
- How to evaluate with (small) partial knowledge?
 - Data volume amplifies the problem
- User aggregation versus personalization
 - Optimize common tasks
 - Move away from privacy issues

Second edition coming soon

Questions?

Thanks to Borkur Sigurbjornsson, Vanessa Murdock, Lluis Garcia, and Roelof van Zwol